Real-Time High Quality Rendering

GAMES202, Lingqi Yan, UC Santa Barbara

Lecture 11: Real-Time Physically-Based Materials (surface models cont.)

Announcements

- No lecture next week
 - SIGGRAPH Asia deadline
- GAMES101 resubmission
 - Have to work on it after next week

Last Lecture

- Real-Time Physically-Based Materials
 - Microfacet BRDF
 - NDF: Beckmann, GGX, GTR
 - Shadowing-masking term
 - Kulla-Conty Approximation for multiple bounces
 - Disney principled BRDF
- Shading with microfacet BRDFs under polygonal lighting

Linggi Yan, UC Santa Barbara

Linearly Transformed Cosines (LTC)

Today

- Shading with microfacet BRDFs under polygonal lighting
 - Linearly Transformed Cosines (LTC)
- Real-Time Physically-Based Materials cont.
 - Disney principled BRDF
- Non-photorealistic rendering (NPR)

Shading Microfacet Models using Linearly Transformed Cosines (LTC)

- Solves the shading of microfacet models
 - Mainly on GGX, though others are also fine
 - No shadows
 - Under polygon shaped lighting

Key idea

- Any outgoing 2D BRDF lobe can be transformed to a cosine
- The shape of the light can also be transformed along
- Integrating the transformed light on a cosine lobe is analytic

- Observations
 - BRDF $\xrightarrow{M^{-1}}$ Cosine
 - Direction: $\omega_i \xrightarrow{M^{-1}} \omega_i'$

- Domain to integrate: $P \xrightarrow{M^{-1}} P'$

Approach

- A simple change of variable

$$\omega_i = \frac{M\omega_i'}{\|M\omega_i'\|}$$

$$L(\omega_o) = L_i \cdot \int_P F(\omega_i) d\omega_i$$
$$= L_i \cdot \int_P \cos(\omega_i') d\frac{M\omega_i'}{\|M\omega_i'\|}$$

$$= L_i \cdot \int_{P'} \cos(\omega_i') J \, \mathrm{d}\omega_i' \quad - \text{Analytic!}$$

Results

Questions?

Disney's Principled BRDF

Why is it needed?

Motivation

- No physically-based materials are good at rep. all real materials
 - e.g. lacking diffuse term in most microfacet models
- Physically-based materials are not artist friendly
 - e.g. "the complex index of refraction n-ik"

High level design goal

- Art directable, not necessarily physically correct
- But again, referred to as PBR in real-time rendering...

What is "principled"?

- The BRDF is designed with a few important principles
 - Intuitive rather than physical parameters should be used.
 - There should be as few parameters as possible.
 - Parameters should be zero to one over their plausible range.
 - Parameters should be allowed to be pushed beyond their plausible range where it makes sense.
 - All combinations of parameters should be as robust and plausible as possible.

How does it work?

A table showing the effects of individual parameters

Pros and Cons

16

- Easy-to-understand / control
- A wide range of materials in a single model
- Open source implementation is available
- Not physically based
 - But is it a big problem?
 - Academia vs. industry
- Huge parameter space

Questions?

Non-Photorealistic Rendering (NPR)

==

stylization

In real-time rendering,

Non-Photorealistic Rendering (NPR)

==

(fast and reliable) stylization

Photorealistic Rendering

Goal

- Indistinguishable from photos
- Focus: lighting, shadows, materials, etc.

Non-Photorealistic Rendeirng (NPR)

- Goal
 - Producing artistic appearances

Characteristics of NPR

- Starts from photorealistic rendering
- Exploits abstraction
- Strengthens important parts

Applications of NPR

- Art
- Visualization
- Instruction
- Eduation
- Entertainment

•

Applications of NPR

[Atelier Ryza 2: Lost Legends & the Secret Fairy]

[Attack on Titan, Season 4]

What are Styles?

Can we summarize styles from this image?

[Xenoblade Chronicles 2]

What are Styles?

- Can we summarize styles from this image?
 - Bold contours (actually, outlines)
 - Blocks of colors
 - Strokes on surfaces

Outline Rendering

- Outlines are not just contours
 - [B]oundary / border edge
 - [C]rease
 - [M]aterial edge
 - [S]ilhouette edge

Outline Rendering -- Shading

- Shading normal contour edges
 - Darken the surface area where the shading normal is perpendicular to viewing direction

Outline Rendering -- Geometry

- Backface fattening
 - Render frontface normally
 - "Fatten" backfaces, then render again
 - Extension: fatten along vertex normals

Outline Rendering -- Image

- Edge detection in images
 - Usually use a Sobel detector

1	0	-1
2	0	-2
1	0	-1

-1	-2	-1
0	0	0
1	2	1

Outline Rendering -- Image

- Edge detection in images
 - May work on different information

Color blocks

- Two different ways
 - Hard shading: thresholding on shading
 - Posterization: thresholding on final image color

Color blocks

- May not be binary
 - Quantization

Color blocks

Different styles on different components

Strokes Surface Stylization

- Sometimes you do not want color blocks
- Instead you want to mimic sketching
- Idea
 - Replace point-wise shading with pregenerated stroke textures
 - Density?
 - Continuity?

Strokes Surface Stylization

- Tonal art maps (TAMs)
 - Strokes of different densities
 - Each density has a MIPMAP

Strokes Surface Stylization

Some Notes

- NPR is art driven
- But you need the ability to "translate" artists' needs into rendering insights
 - e.g. edge
- Communication is important
- Sometimes, per character, even per part

Key Observations

- Something people still haven't paid much attention to
 - Photorealistic models are super important in NPR
- Example: cloth

[Sadeghi et al.]

Next Lecture

Real-Time Physically-Based Materials (scattering models)

https://docs.unrealengine.com/en-US/WorkingWithContent/Hair/index.html

Thank you!

(And thank Prof. Kun Xu for some of the NPR slides)