Real-Time High Quality Rendering

GAMES202, Lingqi Yan, UC Santa Barbara

Lecture 13: Real-Time Ray Tracing 2

Announcements

- GAMES101 resubmission will start soon
- GAMES202 homework 3 has been released
 - Due Jun 12
- GAMES202 homework 4 has almost finished
 - Will be about implementing Kulla-Conty
- Next Saturday, last lecture for GAMES202!

Last Lecture

- Real-Time Ray Tracing
 - Basic idea
 - Motion vector
 - Temporal accumulation / filtering
 - Failure cases

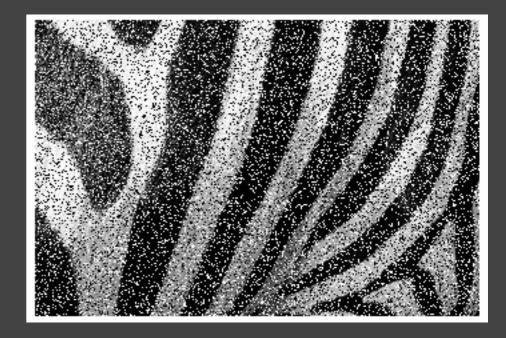
Today

- Implementing a spatial filter
 - Cross / joint bilateral filtering
 - Implementing large filters
 - Outlier removal
- Specific filtering approaches for RTRT
 - Spatiotemporal Variance-Guided Filtering (SVGF)
 - Recurrent AutoEncoder (RAE)

Implementation of Filtering

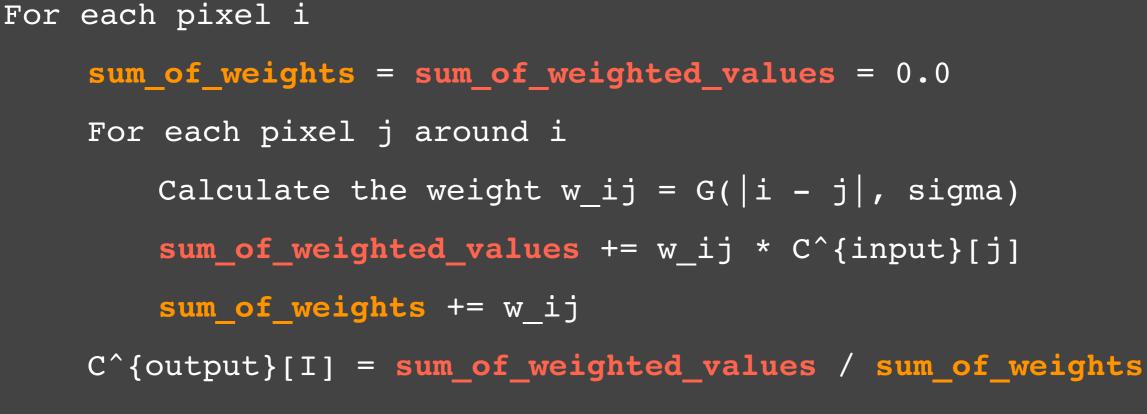
Implementation of filtering

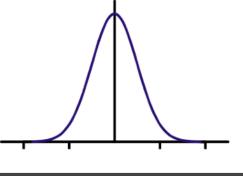
- Suppose we want to (low-pass) filter an image
 - To remove (usually high-frequency) noise
 - Now only focus on the spatial domain
- Inputs
 - A noisy image $ilde{C}$
 - A filter kernel K, could vary per pixel
- Output a filtered image $ar{C}$



Implementation of filtering

- Let's assume a Gaussian filter centered at pixel i (2D)
 - Any pixel j in the neighborhood of i would contribute
 - Based on the distance between i and j





Implementation of filtering

Some Notes

- Keep track of sum_of_weights for "normalization"
- Test whether sum_of_weights is zero (for other kernels)
- Color can be multi-channel

```
For each pixel i
```

sum_of_weights = sum_of_weighted_values = 0.0
For each pixel j around i
Calculate the weight w_ij = G(|i - j|, sigma)
sum_of_weighted_values += w_ij * C^{input}[j]
sum_of_weights += w_ij
C^{output}[I] = sum_of_weighted_values / sum_of_weights

Bilateral Filtering

Bilateral filtering

- Problem of Gaussian filtering
 - Also blurs the boundary
 - But the boundary is the high frequency that we want to keep

https://www.mathworks.com/help/images/ref/imgaussfilt.html

Bilateral filtering

• Observation

- The boundary <-> drastically changing colors

• Idea

- How to keep the boundary?
- Let pixel j contribute less if its color is too different to i
- Simply add more control to the kernel

$$w(i,j,k,l) = \expigg(-rac{(i-k)^2+(j-l)^2}{2\sigma_d^2} - rac{\|I(i,j)-I(k,l)\|^2}{2\sigma_r^2}igg)$$

https://www.mathworks.com/help/images/ref/imgaussfilt.html

Bilateral filtering

• Pretty good results

https://en.wikipedia.org/wiki/Bilateral_filter

Joint Bilateral Filtering

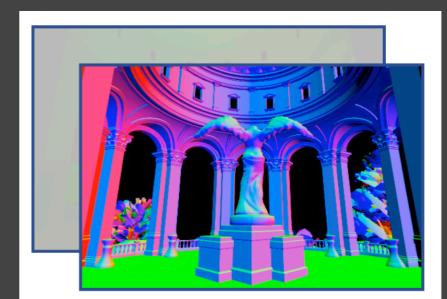
Joint Bilateral filtering

• Observation

- Gaussian filtering: 1 metric (distance)
- Bilateral filtering: 2 metrics (position dist. & color dist.)
- Can we use more "features" to better guide filtering?
- Yes! This is Cross / Joint Bilateral Filtering
- Especially good at denoising path traced rendering results!

Joint Bilateral filtering

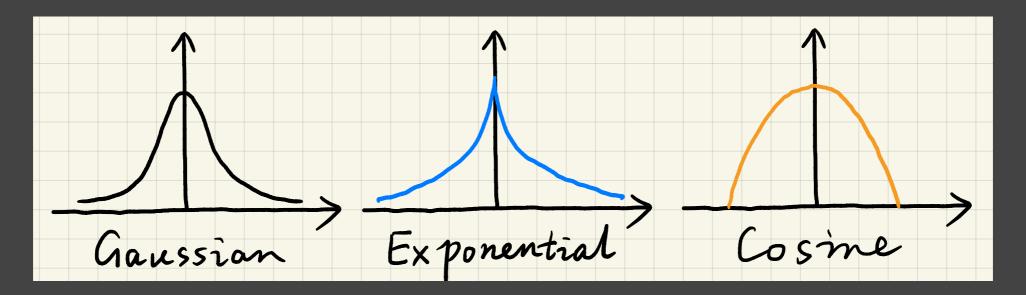
- Unique advantages in rendering
 - A lot of **free** "features" known as Gbuffers
 - Normal, depth, position,
 object ID, etc., mostly geometric
- Even better
 - G-buffers are **noise-free** as they are not related to multi-bounces
- You will be implementing this in homework 5



Pos./Normal

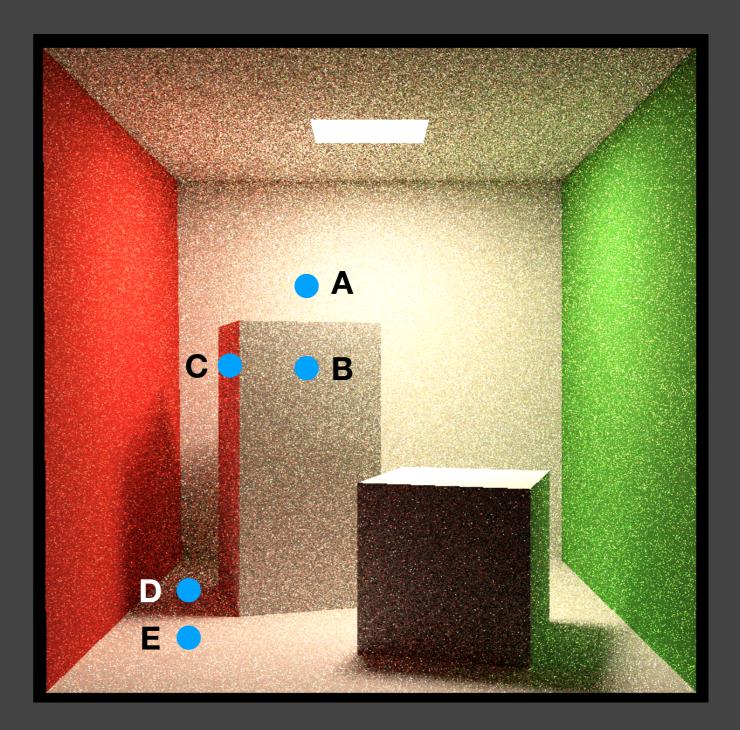
Joint Bilateral filtering - Notes

- The metric itself does not have to be normalized
 - The filtering process does the normalization
- Gaussian is not the only choice
 - Any function that decreases with "distance" would work
 - Exponential (absolute), cosine (clamped), etc.



Joint Bilateral Filtering – Example

- Suppose we consider
 - Depth
 - Normal
 - Color
- Why we do not blur the boundary between
 - A and B: depth
 - B and C: normal
 - D and E: color



Questions?

Implementing Large Filters

Implementing Large Filters

- Recall: for each pixel, we need to loop over all its NxN neighborhood
- Observation
 - For small filters, this is fine (e.g. 7x7)
 - For large filters, this can be prohibitively heavy (e.g. 64x64)
- Two different solutions to large filters

Solution 1: Separate Passes

• Consider a 2D Gaussian filter

- Separate it into a horizontal pass (1xN) and a vertical pass (Nx1)
- #queries: $N^2 \rightarrow N + N$

Original

After horizontal + vertical filtering

After horizontal filtering

Solution 1: Separate Passes

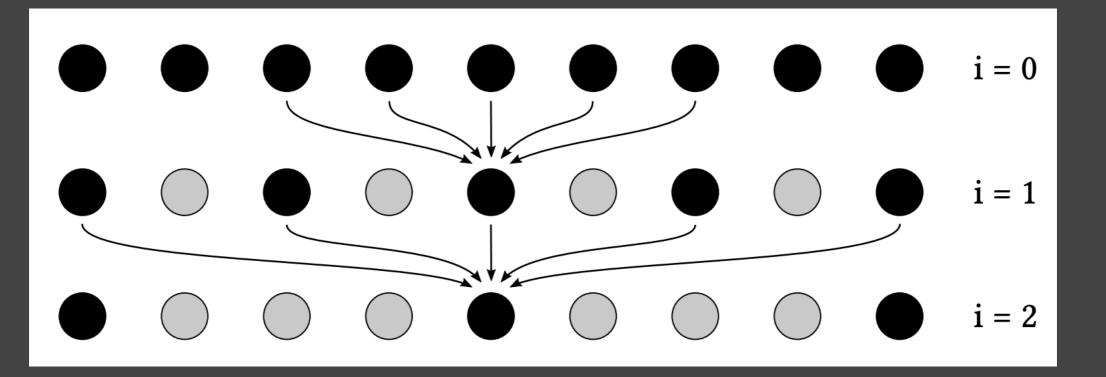
- A deeper understanding
 - Why can we separate a 2D Gaussian filter into two 1D Gaussian filters?
- A 2D Gaussian filter kernel is separable
 - $G_{2D}(x, y) = G_{1D}(x) \cdot G_{1D}(y)$
- Recall: filtering == convolution

$$\iint F(x_0, y_0) G_{2D}(x_0 - x, y_0 - y) \, \mathrm{d}x \, \mathrm{d}y = \int \left(\int F(x_0, y_0) G_{1D}(x_0 - x) \, \mathrm{d}x \right) G_{1D}(y_0 - y) \, \mathrm{d}y$$

 So, separate passes require separable filter kernels (i.e. in theory, bilateral filters cannot be separately implemented)

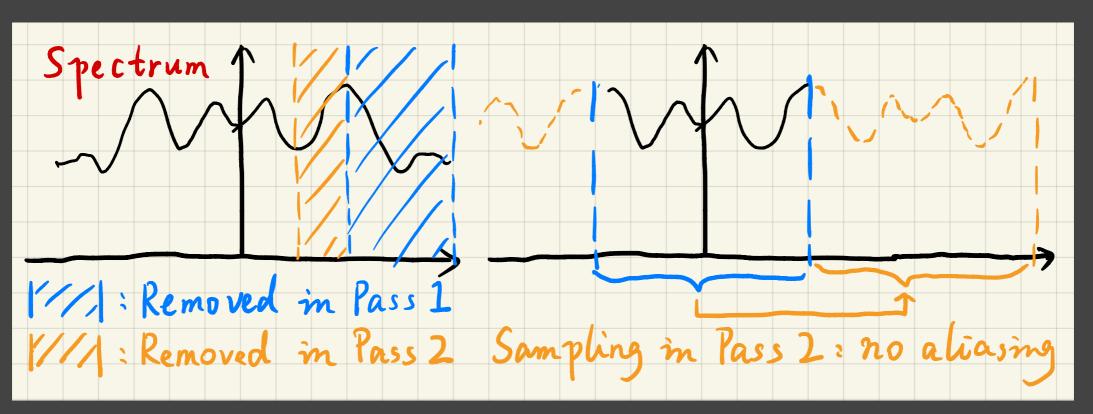
Sol. 2: Progressively Growing Sizes

- Idea: filter multiple times with growing sizes
- Specifically, a-trous wavelet
 - Multiple passes, each is a 5x5 filter
 - The interval between samples is growing (2^{*i*}) (save e.g. $64^2 \Rightarrow 5^2 \times 5$)



Sol. 2: Progressively Growing Sizes

- A deeper understanding
 - Why growing sizes?
 - Applying larger filter == removing lower frequencies
 - Why is it safe to skip samples?
 - Sampling == repeating the spectrum



Questions?

(Note: the abovementioned filtering approaches can be applied to denoising PCSS, SSR, etc. in your homework!)

Outlier Removal (and temporal clamping)

Outlier Removal

• Filtering is not almighty

- Sometimes the filtered results are still noisy, even blocky
- Mostly due to extremely bright pixels (outliers)

• Idea

- Can we remove those outliers **BEFORE** filtering?
- How do we define outliers?

https://clarissewiki.com/4.0/fireflies-filtering.html

Outlier Detection and Clamping

• Outlier detection

- For each pixel, take a look at its e.g. 7x7 neighborhood
- Compute mean and variance
- Value outside [$\mu k\sigma$, $\mu + k\sigma$] -> outlier!
- Outlier removal
 - Clamp any value outside [$\mu k\sigma$, $\mu + k\sigma$] to this range
 - Note: this is NOT throwing away (zeroing out) the outlier

Temporal Clamping

- Recall: directly using the temporal color may result in ghosting
 - This is because $C^{(i-1)}$ can be very different to $ar{C}^{(i)}$
 - In temporal reuse, we can clamp $C^{(i-1)}$ towards $\bar{C}^{(i)}$ so they'll be close

$$C^{(i)} = \alpha \bar{C}^{(i)} + (1 - \alpha) C^{(i-1)}$$

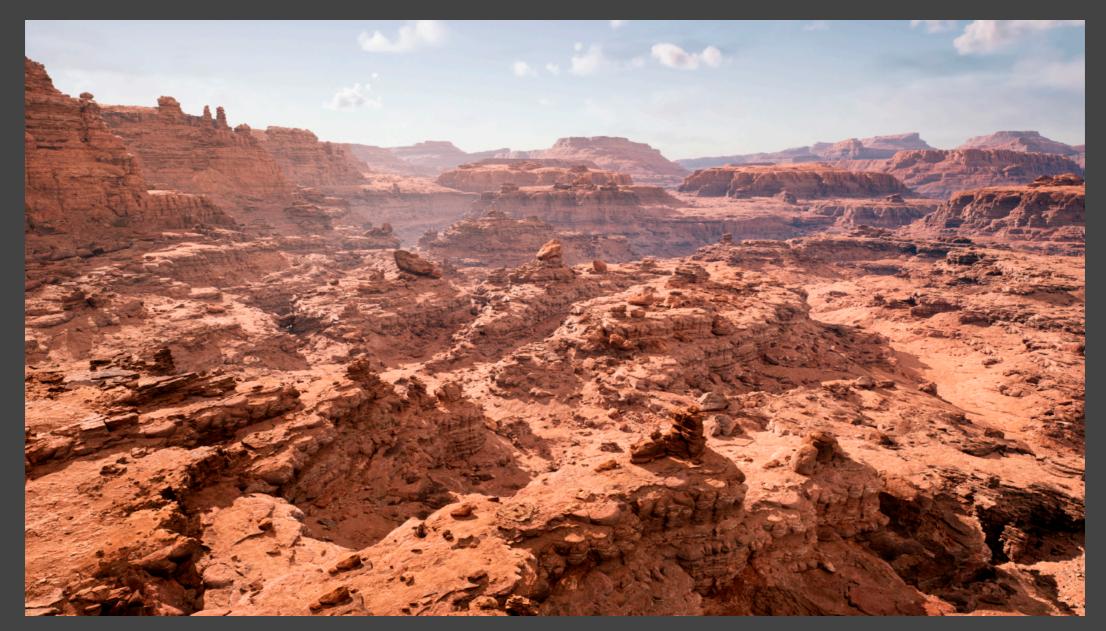
 \Rightarrow clamp $(C^{(i-1)}, \mu - k\sigma, \mu + k\sigma)$

- Notes
 - Temporal clamping is a tradeoff between noise and lagging
 - Clamping $C^{(i-1)}$ towards $\bar{C}^{(i)}$, not the inverse

Questions?

Next Lecture

• Practical Industrial Solutions in RTR



[Unreal Engine 5]

Thank you!