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Abstract—Neural networks are increasingly prevalent in day-
to-day life, including in safety-critical applications such as self-
driving cars and medical diagnoses. This prevalence has spurred
extensive research into testing the robustness of neural networks
against adversarial attacks, most commonly by determining if
misclassified inputs can exist within a region around a correctly
classified input. While most prior work focuses on robustness
analysis around a single input at a time, in this paper we look
at simultaneous analysis of multiple robustness regions. Our
approach finds robustness violating inputs away from expected
decision boundaries, identifies varied types of misclassifications
by increasing confusion matrix coverage, and effectively discovers
robustness violating inputs that do not violate input feasibility
constraints. We demonstrate the capabilities of our approach
on multiple networks trained from several datasets, including
ImageNet and a street sign identification dataset.

Index Terms—Neural Networks, Safety-Critical Systems, Ro-
bustness, Automated Testing

I. INTRODUCTION

With the growing prevalence of neural networks, especially
in safety critical domains such as self-driving cars or medical
diagnoses, evaluating their correctness has become crucial.
While accuracy measures on a previously unseen dataset give
one metric for correctness, neural networks have been shown
to be vulnerable to adversarial attacks in which a correctly
classified input is perturbed in some small manner to make the
network produce a misclassification that a human analyzing the
same information would not [1]. Thus, testing the robustness of
neural networks against these types of attacks is an important
part of assuring their safety and dependability.

In this paper, we present a novel approach for multi-
robustness analysis in which we leverage multiple inputs from
the existing user-labeled training and test sets to automatically
determine areas for which input classifications are uncertain
(robustness conflict regions close to decision boundaries, as
shown in Fig. 1) and do not report inputs within those regions
as misclassifications, while automatically mutating inputs and
providing a scalable multi-robustness testing approach.

We analyze robustness around multiple inputs simultaneously,
which differentiates us from most existing robustness analysis
approaches (Section V) which analyze a region around a
singular input and thus must be run multiple times to obtain
generalizable results about the whole network under analysis.
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Fig. 1. Diagram of an area (robustness conflict region) with uncertain
classification given known human-classified inputs and a perturbation radius
defining a hypersphere around each input

Additionally, we leverage existing labeled training and test set
inputs to avoid areas of uncertainty near expected decision
boundaries (Fig. 1). Other work [2]-[5] analyzes multiple inputs
simultaneously but does not leverage them to identify expected
changes in classification, which allows the potential crossing of
expected decision boundaries, the same as robustness around
a singular input.

We incorporate feasibility constraints on the input values to
the network (e.g., maximum and minimum pixel values) and
sample within these feasibility constraints, which differentiates
our approach from sampling tools such as PROVERO [6] which
do not implement such constraints.

Additionally, we present a method and metric for reporting
the variety of robustness violations based on confusion matrices,
and demonstrate how this approach can be used to visualize and
measure the variety of robustness violations found by analyzing
multiple robustness regions. We use the Lo (Euclidean) distance
metric for defining our robustness radius, as it is a common
metric for robustness [5]-[7]. However, the approach can be
used for any robustness region shape for which the outer edge
can be uniformly sampled.

Our key contributions in this paper and the sections in
which we discuss them are as follows: (1) Formalization of
multi-robustness claims and metrics for multi-robustness testing
(Section II). (2) An automated black-box method for multi-
robustness testing that maximizes the number of robustness
faults found within a given amount of testing time by focusing
on inputs on the edges of the robustness regions (Section III-A).
(3) Bounds analysis to avoid analyzing infeasible samples
(Section III-B). (4) Adjacency analysis to avoid reporting
robustness faults in areas of uncertainty (Section III-C). (5)
Implementation of our approach as a tool MulL, (Multi Lo
Robustness) and its experimental evaluation (Section IV).
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II. MULTI-ROBUSTNESS

In this section, we provide an overview of neural network
robustness and confusion matrices for neural network accuracy
analysis and define multi-robustness and metrics for multi-
robustness testing.

A. Robustness

Robustness in neural networks is the ability of the network
to maintain a correct result despite changes (perturbations)
to the input that preserve its meaning (semantic-preserving).
In the image domain, for instance, perturbations can involve
changing one or more pixels to create an image that appears
identical to human eyes but may cause a misclassification [1],
or more complicated mutations such as translation, rotation,
or adding rain [4], [8]-[17]. A common method of robustness
analysis is to designate a region containing a correctly classified
input which, with any allowed perturbation in the region,
is expected to still maintain the original classification. This
region can then be analyzed using various methods, including
formal verification [18], [19], abstract interpretation [20], or
sampling [6].

The most common approaches to robustness focus solely on
one region or set of mutations about a singular input. This limits
the knowledge gained by the analysis—with larger perturbations
the network is expected to produce a different classification as
inputs cross a decision boundary. One contribution of our
approach is to identify, using multiple correctly classified
inputs from the training and test set, where expected decision
boundaries and thus uncertain samples lie and remove these
from consideration (Fig. 1).

For a given classifier neural network A/ with K possible
classifications and an input X € F", where n is the number of
input features in X and F is the set of floating point numbers,
arg max(N (X)) denotes the classification for input X.

Given a classifier neural network A/, a robustness claim
R(N, X, r) consists of a specific input X and a perturbation
region Sx , (with radius r, centered around correctly classified
input X) that should not contain any inputs with different
classifications. We formalize this in Equation 1. In particular,
we define our perturbation regions as the Lo ball of radius
r centered on X, using (xg, -+ ,z,—1) as the values of
the individual input features that make up X. Then, the Lo
robustness claim R(N, X, r) is formalized as follows:

RW,X,r)=VX' € Sx,, . argmax(N(X")) = arg max(N (X))

n—1

Z(ﬂci — ;)2 <r}
i—0
(D

Here we define the term fault as an input to the network
X' that demonstrates the violation of the robustness claim
RN, X, r):

X' € Sx,» Aargmax(N (X)) # arg max(N (X))

where  Sx , ={X’ |

@

Now we can define the concept of multi-robustness. As
mentioned above, robustness for neural networks is often

measured using local robustness—a small region, generally
about a singular input, for which the network should not
produce different results. However, analyzing a single input may
not give enough information to generalize to the full network.
Hence, we define multi-robustness as a strategy where multiple
local perturbation regions are analyzed together.

Given a set of inputs Ir for which individual robustness
is expected to hold, we formalize a multi-robustness claim
R(N,Ig,r) for a given network N, set of expected robust
inputs I, and robustness radius r as follows:

R(N,Ip,7) =
VX €Ir . VX' € Sx,, . argmax(N(X')) = argmax(N (X))
ne1 3)
where  Sx ., ={X' | Z(x, —xz})2 <r}
i=0

Our black-box testing approach seeks to find as many faults as
possible that violate this claim (as discussed in Section II-C
and III-A) while maximizing the variety of faults reported
(as discussed in Section II-B, II-C, III-B) and avoiding
infeasible samples (as discussed in Section III-B) and cases
that are near the expected decision boundaries (as discussed
in Section III-C).

B. Confusion Matrices

To demonstrate and quantify the results we obtain from our
multi-robustness testing approach, we use confusion matrices.
Confusion matrices are a common tool for evaluating the
testing performance of a neural network [21]. These matrices
show, given a test set, the number of correctly and incorrectly
classified instances, grouped by the expected classification
(indicated by the column) and output classification (indicated
by the row). For a network N with K classifications, the
full confusion matrix will be of size K x K. Fig. 2 shows
example confusion matrices for a network classifying images
as either a cat, dog, or rabbit. Entries on the diagonal indicate
success—the number of correctly classified instances—while
entries off the diagonal indicate the number of classification
failures, grouped both by the expected and output classification.

The confusion matrices shown in Fig. 2 show two test sets
with the same number of misclassifications. The test set for the
matrix on the left shows more variety of faults. We formalize
these concepts as fault coverage and fault count below and
construct a robustness confusion matrix where the test set is
obtained from the perturbation regions around a set of correctly
classified inputs.
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Fig. 2. Two sample confusion matrices for a network that classifies images
as dogs, cats, or rabbits
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C. Metrics for Multi-Robustness

Given a test set 7', we define two key metrics for multi-
robustness analysis: fault count and fault coverage. Fault count
is the number of misclassified inputs within the perturbation
regions (Sx ), computed as:

fault count =

Z [X" € Sx,r Aarg max(N(X')) # arg max(N (X))]

X'eT

“

where [expr] evaluates to 1 if expr is true and 0 otherwise.
Let CT denote the confusion matrix created from the elements
of the test set 7. We define the fault coverage as follows:

K K
fault coverage = Z Z[z PN CEJ- # 0]

i=1j=1

(&)

Fault count denotes the number of misclassifications found,
whereas fault coverage denotes the number of non-diagonal,
non-zero entries in the robustness confusion matrix.

Our black-box testing approach (discussed in Section III)
generates a test set 7" such that:

TC |J Sx,rCF"
Xelg

(6)

containing only samples from the robustness regions of the
elements in Ir (inputs for which the robustness claim is
expected to hold), while aiming to maximize both fault count
and fault coverage.

For the remainder of this paper, we will use the term input
to refer to elements of I, and sample to refer to elements of
T (the test set generated to test robustness).

III. BLACK-BOX MULTI-ROBUSTNESS TESTING

We present the components of our sampling-based black-box
multi-robustness testing approach below. Our approach samples
only the edges of the perturbation region around each input,
and accounts for cases where samples within the perturbation
region are infeasible and cases where the perturbation regions
of inputs overlap. Our algorithm requires only black-box access
to the network under analysis.

A. Surface Sampling Strategy

When looking for samples that show faults, especially
since our multi-robustness testing strategy is looking at the
perturbation regions around multiple inputs, we focus the search
on cases that are more likely to be misclassified. It is known
that perturbed samples which move further from an input are
more likely to be misclassified than those close in, and other
works have explored this strategy to look for misclassifications
in images [8]. For our approach we also adopt this idea by
sampling only the edges of the perturbation region around each
input rather than the entire area. We distinguish this idea with
two terms: the robustness ball designates the entire volume of
the spehere with radius r (with distance 7 or closer to an input),
whereas the robustness sphere denotes only the surface of that
volume (i.e., the edges of the perturbation region) consisting
of samples that are furthest away from the input within the

perturbation region. We demonstrate a comparison between
these two approaches in Section IV.

To uniformly sample on the surface of the L, volume of
radius r (i.e. the surface of the perturbation region around the
input), we use Algorithm 1. This algorithm, in simple terms,
uniformly samples angles about the origin [22], then creates
points distance r from the center at the sampled angle.

We present a refinement of this initial surface sampling
algorithm in Algorithm 2, and we will discuss the additions in
Sections III-B and III-C below.

B. Handling Bounded Inputs

When sampling along the Ly sphere around each input
(i.e., the surface of the perturbation region), in some cases
(especially in image classification), there are bounds on the
values that each input feature can take. For instance, in the
MNIST dataset, images are composed of pixels ranging from
black (0) to white (255), and pixel values outside of that range
have no corresponding meaning.

We specify feasibility constraints as upper and lower bounds
for each input feature. This type of constraints is sufficient
to describe many scenarios, such as feasible pixel values in
images and constraints on physical measurement input features
(for example, when a value cannot be negative).

To make sure that our approach finds feasible misclassifi-
cations (after all, if an input cannot exist it is irrelevant if it
is misclassified), we must take into account these feasibility
bounds on each input feature while sampling. To begin, we
show our approach to complete bounds—cases where the input
lies on one or more feasibility bounds. Fig. 3 shows a set of
inputs with two input features, with 2, 1, or O complete bounds.

Avoiding sampling outside of complete bounds is simple—
we can avoid generating random inputs in those quadrants.
We do this using lines 4-6 in Algorithm 2. However, a more
difficult type of bound to handle is one which cuts off less than
a full half of the available sampling space. For this purposes
of this paper we will call this type of bound a partial bound.

Algorithm 1 SAMPLE(Vinpus, )

> Generates a randomly selected sample with distance r from
Vinpu» with uniform distribution over the surface area.

> Calls function RANDNORM() to generate a randomly chosen
number with Normal distribution, and DISTANCE(V;, V») to
compute the Euclidean distance between two vectors.

Input: Vi, vector of coordinates corresponding to a singular input under
examination, where each coordinate is the value of an input feature; 7:
robustness radius.

Output: Vy,.: vector containing a sample, distance r from Vippu.

: Viample <= Vzeroes > vector with length of V,,, containing zeroes
: for i=1 to length(Viypu:) do
Viampie[i] <— RANDNORM()
end for
d <+ DISTANCE(Vzemeu V,ramplf)
for i=1 to length(Vippu:) do
Vsumple [7'] <~ meple [7'] X (T/d) + Viﬂl’l” [7‘]
end for
: return Vgmple

VRN BN
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Fig. 4 (Left) shows an example of an input with two input
features, and some bounds on each input feature (2 complete
and 1 partial). The yellow shaded area is the area of the
perturbation region within the bounds and within the robustness
radius, and the purple line shows the valid inputs on the surface
of the perturbation region to sample. The bound on the right
of the circle is a partial bound. We analyze two strategies for
managing these partial bounds.

Algorithm 2 SAMPLEin0;(Vinput, 7y Bu, Br)

> Generates a randomly selected sample from Vjy,,;, satisfying
bounds constraints and rejecting samples in robustness conflict
regions.

> Calls function RANDNORM() to generate a randomly cho-
sen number with Normal distribution, DISTANCE(V, V5) to
compute the Euclidean distance between two vectors, and
GETADJACENT(V,,u) to get a list of inputs adjacent t0 Viypy,.

Input: V. vector of coordinates corresponding to a singular input under
examination, with each coordinate being the value of an input feature (for
example, one pixel); r: robustness radius; B, and Bj: vectors of (upper and
lower) bounds for each input feature.

Output: Vy,.: vector containing a sample.

: Viampie <= Vzeroes > vector with length of Vi, containing zeroes

: for i=1 to length(Viypu:) do

Viampie[t] <— RANDNORM()

if Viample[i] violates complete bound then
anmpl(' [7/] — —1x anmple [Z}

end if

: end for

: d < DISTANCE(Vzeres; Vsampie)

: for i=1 to length(Vippu:) do

10: meple ['L] <~ Vsample [Z] X (T/d) + Vinput ['L]

11: if Strategy = Constrained (C) then

R A N

12: if Vsampk’ [1] > By [7‘} M Vsampk’ [1] < Bl [7’] then
13: return “Rejected Sample”

14: end if

15: else if Strategy = Constrained Adjusted (CA) then
16: if Viampie[?] > Bu[i] then

17: Vsample M < By [1]

18: else if Vg [i] < By[i] then

19: meple ['L] — Bl [Z]

20: end if

21: end if

22: end for

23: for V,4; in GETADJACENT(Viypyr) do
24: if DISTANCE(Vsampie, Vaaj) < 7 then

25: return “Rejected Sample”
26: end if
27: end for

28: return Vg

The first strategy is to generate samples along the available
radius and reject those which do not fall within the bounds.
Fig. 4 (Center Left) illustrates this approach, where the light
purple line indicates the samples which are rejected and the
dark purple line indicates the ones which are kept and tested in

L O

Fig. 3. Perturbation regions around three different inputs in two dimensions,
with 2, 1, or 0 complete bounds

the network. We show the algorithmic addition as lines 11-14
in Algorithm 2 and name this the C bounds strategy as it is
Constrained.

The main benefit of this strategy is that it preserves
uniformity of sampling. However, we discover experimentally
(Section IV) that this approach rejects a large number of
samples which wastes sample generation effort and thus time.

Our alternative approach to handling these partial bounds
is more practical from a fault finding perspective, and we
demonstrate in Section IV that it improves fault count and
fault coverage, although it does not preserve uniformity of
sampling. In this approach, we adjust inputs that are generated
outside partial bounds such that they lie on the partial bound
instead. Fig. 4 (Center Right) shows the samples created by
this technique, along the purple line.

We do this adjustment by replacing any input feature value
outside its bound with the bound value itself, as shown in
Fig. 4 (Right). This approach does yield samples which are
more tightly clustered in the section of the partial bound furthest
from the original input, but it avoids the drawback of the C
bounds approach above—since it does not reject the inputs
outside of the partial bounds it does not face high rejection
rates. We show this addition in lines 15-20 in Algorithm 2 and
name this the CA bounds strategy for Constrained Adjusted.
We compare applications of these strategies in our experimental
evaluation in Section IV.

C. Handling Adjacent Inputs and Uncertain Regions

The correct location of decision boundaries for a classifier
neural network is unknown—otherwise, the classifier could be
implemented using those boundaries with 100% correctness
and without training a neural network. Thus, we leverage the
available information—the labels of training and test data—to
approximate the locations of expected decision boundaries.

Within our approach, if two inputs, each with different
expected classifications, have overlapping robustness regions,
we consider the overlapping area to be an uncertain region
for which we cannot specify faults. We demonstrate in Fig. 1
how we use this as a proxy for expected locations of intended
decision boundaries.

In our approach, we reject any generated sample which
lies within multiple inputs’ perturbation regions and would
otherwise be considered a fault. We examine in Section IV-B
the benefits and drawbacks to rejecting samples within distance
r of two inputs in I with different classifications before or

GO @

Fig. 4. Left: Perturbation region for an input constrained by three bounds—
two complete and one partial; Center-Left: sampling when partial bounds are
used to reject infeasible inputs (light purple); Center-Right: Sampling when
infeasible inputs outside partial bounds are adjusted to lie along partial bounds;
Right: Adjustment of infeasible inputs (light purple) to feasible inputs along
partial bound.
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after testing within the neural network. We additionally analyze
the benefits and drawbacks of rejecting samples within distance
r of two inputs in I with the same classification, as these are
less likely to be misclassified.

This adjacency analysis is a key advantage of our multi-
robustness analysis compared to iteratively running a single
robustness tool multiple times—a single robustness tool will
not account for the parts of the perturbation region that overlap
with perturbation regions of inputs with different classifications,
and so can flag faults that are not meaningful (for example
cases where the perturbation region crosses over an expected
decision boundary and thus the change in classification does
not correspond to a fault). We demonstrate quantitatively
in Section IV this drawback of single-robustness and how
our approach remedies it. This addresses a prior criticism of
robustness—a neural network cannot be fully robust because
decision boundaries must exist somewhere [23]. By analyzing
multiple inputs at once, we are able to avoid alerting to faults
that are in actuality expected changes in classification.

A version of this check (for which any sample within distance
r of two inputs in Iy is rejected) is added algorithmically as
lines 23-27 in Algorithm 2. In Section IV we analyze whether
this check should be done before or after running a sample
in the network and whether adjacent inputs with the same
classification should be considered. We compute the adjacencies
for each input, to be retrieved by GETADJACENT(Viypur), at
the beginning of the multi-robustness analysis.

IV. EXPERIMENTAL EVALUATION

In this section we present experiments and answer five
research questions:

RQ1: Does sampling only at the edges of the robustness
region improve fault finding?

RQ2: How do various strategies of handling infeasible inputs
impact the fault discovery process?

RQ3: Can identifying adjacent inputs aid in meaningful fault
discovery by avoiding marking faults near expected decision
boundaries?

RQ4: Does MuLy discover varied neural network robustness
faults in a scalable manner across multiple inputs simultane-
ously?

RQ5: Does MulLs improve fault discovery beyond existing
techniques and tools?

Full data and code are available in our artifact at https:
//github.com/mara-downing/MuL_2.

A. Ablation Study: Sampling Strategy and Bounds Handling

In this section we answer RQ1 and RQ2. We perform an
ablation study of our approach (Table I) using the MNIST
and CIFARI10 datasets, with 1000 correctly classified inputs
in I to sample around (randomly chosen from the set of all
correctly classified inputs from the respective dataset with the
given network). Our variants are a combination of two pieces:
Ball/Sphere and possible bounds strategies C or CA. Ball and
Sphere indicate whether the entire perturbation region (Ball)
or just the furthest edges (Sphere) are sampled. C and CA are

the feasibility bounds strategies described in Section III-B; if
no bounds strategy is listed, no bounds checking or adjustment
is done during sample generation.

For MNIST we use two published networks, LeNetl and
LeNetS5. We additionally choose the same set of 1000 correctly
classified inputs for both of these networks (of the subset of
inputs which both networks classify correctly). For CIFAR10
we use the published network ResNet20. All three of these
networks are obtained from Xie et al. [4].

Results are presented in Table I. We chose small radii such
that only around 2% of the samples per test run show faults.
One key use case of MulLy is shown here—comparison of
robustness between networks—as we can see that LeNet5 is
more robust than LeNetl on the same input set.

From this data we can see that bounds handling is imperative
to obtaining feasible inputs to test—the first two rows of Table I,
without bounds handling, had the highest sample rejection rates.
For the Ball + C and Sphere + C approaches we can see that
fault coverage and fault count are overall lower than the Ball
+ CA and Sphere + CA results.

In all of these tests, we see similar results between the Ball
+ CA and Sphere + CA options. The Sphere + CA option is
slightly better on average—this small distinction is reasonable
given geometric considerations: in an Ly ball of 784 dimensions
(the number of pixels in an MNIST image) and radius 4,
approximately 86% of the volume is farther than distance 3.99
from the center.

Fig. 5 shows a bar chart demonstrating the difference in
fault count and fault coverage between the four options with
bounds handling. These experiments show that Sphere + CA
is the preferred strategy for maximizing both fault count and
fault coverage as defined in Section II. This answers RQ1 and
RQ2 by showing the merits of sampling on the edge of the
region and comparing bounds handling approaches to find that
CA bounds handling performs best.

B. Adjacent Inputs Strategy Comparison

In this section we answer RQ3 as well as analyze different
strategies for when and how to handle sample rejection due to
adjacency. For this analysis, we use the same three networks
as in Section IV-A, each with a higher robustness radius for
which there are a higher number of adjacencies between inputs
in Ir. We present our results in Table II.

The rows of Table II are as follows: No Adj. Rej. signifies
that no samples were rejected due to adjacency to other inputs
until after testing in the network. Diff. Adj. Rej. signifies that

12500 W Bal+C

10000 N | Sphere + C
7500 } Ball + CA
5000 m Sphere + CA
2500

0 T |

LeNet! LeNet5 ResNet20

@
S

40

20

Fault Coverage
Fault Count

LeNet1 LeNet5 ResNet20

Network Network

Fig. 5. Fault Coverage For Ball + C, Sphere + C, Ball + CA, and Sphere +
CA Strategies.
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TABLE I
ROBUSTNESS SAMPLING RESULTS FOR 2 HOURS ON MNIST AND CIFAR10 DATASET NETWORKS—ABLATION STUDY TO ANALYZE IMPACT OF
SAMPLING AT EDGES OF PERTURBATION REGION AND BOUNDS HANDLING STRATEGIES; BLUE SHADING INDICATES BEST RESULT IN COLUMN

T LeNetl (MNIST): r = 4

LeNets (MNIST): r = 4

ResNet20 (CIFAR10): r = 100

[
| MuLy Variant [[ % Rejected

[ #Faults [ Fault Coverage | % Rejected | # Faults | Fault Coverage | % Rejected | # Faults | Fault Coverage
Ball 100.00 0 0 100.00 0 0 52.21 1186 25
Sphere 100.00 0 0 100.00 0 0 52.23 1173 26
Ball + C 98.53 4477 20 98.54 122 5 45.84 1188 28
Sphere + C 98.54 4897 20 98.54 123 5 46.02 1242 27
Ball + CA 0.00 10665 57 0.00 534 17 0.00 1561 27
Sphere + CA 0.00 10798 56 0.00 554 16 0.00 1655 29

the samples which fell into robustness conflict regions (within
r of two inputs of different classes) were rejected before testing
but that inputs within r of two inputs of the same class were
kept and tested. Same Adj. Rej. signifies the opposite—samples
which fell into robustness conflict regions (within r of two
inputs of different classes) were kept but inputs within r of
two inputs of the same class were rejected. Finally, All Adj.
Rej. is where samples are rejected if they are within r of two
or more inputs, regardless of classification.

Rep(orted) faults counts all misclassifications identified,
False Pos(itives) indicates how many of those misclassifications
fell within a robustness conflict region and were rejected after
testing in the network (rather than before), and Real Faults is
the difference of those two values.

We can see that our approach is able to find (and reject)
faults which would otherwise be false positives, which would
not be possible with a robustness tool which does not consider
expected decision boundaries.

Rejecting samples within 7 of multiple inputs with the same
classification has no effect on the number of false positives
since these are not robustness conflict regions. More faults
are found when they are not rejected as it is faster to run the
sample in the network than to check these adjacencies.

When rejecting samples within 7 distance of multiple inputs
with different classifications, some false positives occur and
must be thrown out. However, waiting until after a sample has
been run in the network to decide if it is a false positive is
preferable, as it saves time on any case in which a sample
within a robustness conflict region is classified the same as the
input it was generated from and thus would not be considered
and counted as a fault.

With these results, we are able to answer RQ3 and show that
our adjacency analysis is able to avoid marking faults within
robustness conflict regions. We additionally find which strategy
of adjacency rejection is best for discovering the most faults—
only looking at adjacencies between differently classified inputs,
and only checking if a sample is in a robustness conflict region
after running it in the network.

C. Scalability to Large Datasets

We have already seen the the variation in faults found, but to
demonstrate the scalability of our approach to larger robustness
problems and complete our answer for RQ4, we analyze
robustness of two networks trained on the ImageNet [24]
dataset: Inception-V3 [25] and ResNet50 [26]. Inception-V3

expects inputs in the form of 299x299 pixel RGB images,
and ResNet50 expects images in the form of 224x224 pixel
RGB images. There are 1000 possible classifications which
can be obtained from these images, and we give a set of 2000
correctly classified inputs in /.

We choose a small radius for each network (the networks
expect differently sized inputs) and show our results in Table III.
Additionally, we show sample images of the faults we found
in Fig. 6. With these results, we answer RQ4 and show that
our approach is scalable to large inputs and input sets.

D. Critical Use Case: Street Sign Identification

To show practical utility, we apply our best strategy (Sphere
+ CA) to a street sign identification problem using the TSRD
dataset [27] made up of images of street signs from China.
This dataset contains images of 58 types of signs.

We present here a subset of the confusion matrix produced by
a network trained to 98.08% accuracy on this dataset (Fig. 7).
We test using = 5 for 2 hours. Due to the number of available
classifications, we simplify our confusion matrix to only show
the classes which contributed to fault count or fault coverage.

With these results we demonstrate that our approach can be
used to find meaningful faults in safety-critical networks.

E. Comparison with Symbolic Techniques, Domain-Specific
Mutations, and Adversarial Attack Strategies

Finally, we set up comparison experiments with some of
the most similar fault finding tools and compare their efficacy
with our approach, to answer RQS.

1) Scalability Comparison with White-Box Robustness via
Concolic Execution: Sun et al. [2], [3] present DeepConcolic,
which natively handles multiple correctly classified inputs
at once and uses concolic execution to explore the search
space. While symbolic reasoning typically struggles to scale to

Fig. 6. Example faults found from ResNet50 (Left) and Inception-V3 (Right)
Networks for classifying the ImageNet Dataset. Left two images: original
image of Tractor, followed by perturbed image, classified as Custard Apple.
Right two images: original image of Fur Coat, followed by perturbed image,
classified as Bow Tie.
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TABLE II
ADJACENCY STRATEGY ANALYSIS, 20 MINUTES PER RUN; BLUE SHADING INDICATES BEST RESULT IN REAL FAULTS COLUMN

LeNetl, r = 11

LeNet5, r = 11

ResNet20, » = 3500

I
l

[ Strategy || Rep. Faults | False Pos. | Real Faults [[ Rep. Faults [ False Pos. | Real Faults || Rep. Faults | False Pos. | Real Faults

No Adj. Re;j. 15,573 279 15,294 12098 342 11756 5,158 184 4,974

Diff. Adj. Re;j. 13,666 0 13,666 6,826 0 6,826 4,457 0 4,457

Same Adj. Re;j. 13,957 61 13,896 9,230 69 9,161 4,526 77 4,449

All Adj. Rej. 11,826 0 11,826 5,329 0 5,329 4,034 0 4,034
TABLE III 2) Fault Coverage Comparison with Neuron-Coverage-

IMAGENET ROBUSTNESS RESULTS, 2 HOURS FOR EACH TEST

[ Network [[ Fault Count | Fault Coverage |
[ ResNet50, r = 4 ] 1310 | 132 ]
[ Inception-V3, » = 15 H 909 [ 194 ]

larger networks, concolic execution leverages concrete inputs
alongside symbolic analysis.

We experiment using the mnist_complicated.h5
network which they use and give as a sample in their code
repository [2], [3], and run their tool with 100 randomly chosen
correctly classified inputs, the NC criterion (which they found
to be most effective for MNIST) and an L., radius of 3. For
our comparison, we use the same 100 inputs and an Lo radius
of 3, which is strictly encompassed by the L., radius [28]. We
ran each tool for 10 hours.

There is a major difference in the way in which
faults are considered between MulL, and DeepConcolic—
DeepConcolic [2], [3] is not bound to the seed inputs and
reports faults as cases for which two samples with different
classifications are within the provided L., distance of each
other—in essence, input pairs which demonstrate expected
changes in classification across decision boundaries, the exact
inputs which our approach avoids marking as faults due to
such a classification change being expected.

Despite these differences, we can present quantitative results
in Fig. 8 demonstrating that although we have less search
space, we are able to find more faults. Due to the different
interpretation of what constitutes a fault, further analysis into
the types of faults discovered (fault coverage) is incomparable.

Freq
0 0
- ! 30000
g 0 0
@ 20000
o 34- 0 0 2622 0
10000
35- 0 1514 390 11877
28 31 34 35 °
Expected

Fig. 7. Top: subset of Robustness Confusion Matrix for TSRD Classification
Network with Two Hidden Layers of Size 5000. Bottom-Left: Original image
of classification 34 (exclamation point). Bottom-Center: One of the 390
misclassifications of an image in the radius of 34 to 35 (crosswalk). Bottom-
Right: Sample image of what classification 35 should look like.

Based Fuzzing: Next, we compare our tool with DeepHunter [4]
which uses image mutations to fuzz neural networks for
misclassifications. We choose the LeNet5 network for analysis
as well as the most optimal combination of parameters (prob
seed selection and NC coverage) from [4] for that network.
We use the same 10 input images for each approach, which
are taken from the DeepHunter experiments [4].

Within Fig. 9 (Left) we can see that as we increase the radius,
we are able to find greater fault coverage than DeepHunter.
However, we also know that at a certain point the images
obtained will not be readily identifiable, so we present in
Fig. 10 a few misclassifications we obtain at radius 9.5 to
demonstrate they are still reasonable inputs. We also present in
Fig. 9 (Right) how fault coverage increases over time for each
approach, using radii 9 and 9.5 for MuLs, which are above
and below the fault coverage of DeepHunter in this time frame.

From these experiments we see that our approach can
improve fault coverage over DeepHunter [4] by increasing
the radius where we search for faults, and that these radius
increases still produce meaningful misclassifications that a
human can identify correctly. We also show with Fig. 9 (Right)
that while DeepHunter increases fault coverage rapidly within
the first 5 minutes, it levels off whereas Mul, is able to
continue improving fault coverage further. We additionally
exceed the fault count of DeepHunter at r = 11.

Finally, MuLs can be applied to any classification network,
whereas DeepHunter and similar image fuzzing approaches
rely on the domain-specific mutations.

3) Comparison with Adversarial Attack Tools: We present
here a brief experimental comparison with the DeepRover
query-efficient Lo adversarial attack tool [5]. Used in its
intended format, the DeepRover tool starts with a set of inputs
to attack and removes each from the set when an attack is
found against it. This approach leads to a high fault coverage,
as different inputs with different classifications are successfully
attacked, but a limited fault count, as each input can only be

® DeepConcolic ® MuL_2
2000
1500 ‘
1000
500

Fault Count

Time (hr)

Fig. 8. Fault count of MuL2 compared with DeepConcolic over 10 hours,
using Lo radius of 3 for MuLs and L radius of 3 for DeepConcolic.
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attacked once. However, this approach of finding a singular
fault per input does not show information such as which types
of faults are more common, or whether there are classifications
more or less prone to robustness faults. Thus, we set up an
experiment where we use DeepRover to attempt our goal of
multi-robustness analysis.

For this experiment, we select 2000 correctly classified inputs
at random for Iy, using the ResNet50 network. We select an
Lo radius of 4, and use DeepRover in a loop to select one
input at random from [Ip, run an attack, and report either a
singular fault found or a failure after a set number of attempts.
We vary this attempts parameter, and demonstrate our results
in Fig. 11, where both our approach (MuLs) and DeepRover
were given 2 hours.

We can see that our approach achieves both higher fault
count and higher fault coverage in the same amount of time,
even as we vary the number of DeepRover iterations per input.

With these three comparisons we answer RQS by show-
ing that MuLs improves fault discovery beyond three ex-
isting tools: DeepConcolic [2], [3], DeepHunter [4], and
DeepRover [5].

F. Discussion

Through the experiments we have answered all of our
research questions. We discover robustness faults in a scalable
manner across multiple inputs and demonstrate the necessity
of considering multiple inputs in omitting false positives in
the discovered faults.

For both the DeepConcolic [2], [3] and DeepHunter [4]
comparisons we chose the best set of parameters found in
the original research papers (respectively) for the network and
dataset. We chose a network for each that was available in their
artifact. For DeepRover [5], as there was no clear choice for
the number of iterations, we ran multiple tests with different
numbers of iterations to compare.

Extending this approach to regression networks is feasible
future work, with a different output format as confusion
matrices are dependent on discrete classifications.

® MuL_2 = DeepHunter

® MuL_2;r=9.5
® MuL_2;r=9
@ DeepHunter
4000 6000

B O

o o
Fault Coverage

N W

o o

Fault Coverage
o 8
\

6 8 10 12 14 0 2000

L_2 Radius Time (s)

Fig. 9. Left: Fault coverage with increasing Lo radius with MuLo compared
with fault coverage computed by DeepHunter; Right: Fault coverage increase
with time for MuLs2 using Lo radii 9 and 9.5 compared with DeepHunter

Fig. 10. Misclassifications found by MuLg at Lo radius 9.5

V. RELATED WORK

There is much prior work on both quantitative and non-
quantitative analysis of neural networks [2], [4]-[6], [8], [10],
[10]-[20], [23], [29]-[75]. Within this paper, we align most
with a smaller proportion of these which produce quantitative
results [6], [40], [42], [49], [S1]—how many misclassified
inputs exist within a perturbation radius. We expand on these
works with our introduction of multi-robustness, which includes
identification of robustness conflict regions, as well as our
introduced fault coverage metric.

One closely related tool, PROVERO [6], uses sampling within
a single robustness region around an input to prove if robustness
is above or below a threshold. Our Ball approach implemented
in Table I (row 1) implements the same sampling strategy as
PROVERO’s L, robustness region. The PROVERO tool does not
implement feasibility bounds, whereas we show that without
these bounds implemented, many if not all samples must be
rejected as they do not correspond to an image.

Addressing limitations of singular input robustness by
clustering inputs with the same classification to construct larger
and more complex regions expected to be robust has been
explored [35]. However, in larger domains such as MNIST this
clustering struggles to scale. We have demonstrated that our
approach can scale to larger domains.

While our goal is not to search for adversarial attacks by
input [5], [7], [76]-[80] but rather quantify the prevalence of
faults, we modify the adversarial attack tool DeepRover [5]
towards our goal, and show how we improve upon both fault
count and fault coverage.

VI. CONCLUSION

We demonstrate in this work our black-box approach to
analyzing Lo robustness of multiple inputs to a network simul-
taneously. Through this paper, we demonstrate the scalability
of our approach and our ability to find varied faults in
neural networks. Additionally, we show how feasibility bounds
analysis is necessary for producing valid faults and effectively
limiting the number of samples that need to be rejected
due to infeasibility. We demonstrate how analyzing multiple
inputs simultaneously allows for automatic rejection of “false
positive” faults that are in actuality changes in classification
across expected decision boundaries. Finally, we show that our
implementation in our tool MulLy performs favorably against
three existing tools for fault discovery.

1500 150

100
50
0

1000

500 N\\._._‘

0

Fault Count
Fault Coverage

Q N W 0 N N Q 0 N 0 N N
\QQQ ’LQQQ erQQ AQQQ ‘:)QQQ \QQQ ’)’QQQ %QQQ 5000 ‘:)QQQ

Number of DeepRover Iterations per Input @ DeepRover = MulL_2

Fig. 11. Fault count (left) and coverage (right) with MuL> compared with
DeepRover

430



[1]

[2]

[3]

[4]

[5

=

[6

=

[7]

[8

[t}

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18

REFERENCES

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and D. Kroening,
“Concolic testing for deep neural networks,” in Proceedings of the 33rd
ACMY/IEEE International Conference on Automated Software Engineering,
2018, pp. 109-119.

Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill, and R. Ashmore,
“Deepconcolic: Testing and debugging deep neural networks,” in 2079
IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). 1EEE, 2019, pp. 111-
114.

X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao, B. Li,
J. Yin, and S. See, “Deephunter: a coverage-guided fuzz testing framework
for deep neural networks,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp.
146-157.

F. Zhang, X. Hu, L. Ma, and J. Zhao, “Deeprover: A query-efficient
blackbox attack for deep neural networks,” in Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2023, pp. 1384-1394.

T. Baluta, Z. L. Chua, K. S. Meel, and P. Saxena, “Scalable quantitative
verification for deep neural networks,” in 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering (ICSE). 1EEE, 2021, pp.
312-323.

M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein, “Square
attack: a query-efficient black-box adversarial attack via random search,”
in European conference on computer vision. Springer, 2020, pp. 484—
501.

Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of
deep-neural-network-driven autonomous cars,” in Proceedings of the 40th
international conference on software engineering, 2018, pp. 303-314.
B. C. Hu, L. Marsso, K. Czarnecki, R. Salay, H. Shen, and M. Chechik,
“If a human can see it, so should your system: Reliability requirements
for machine vision components,” in Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 1145-1156.

X. Xie, P. Yin, and S. Chen, “Boosting the revealing of detected violations
in deep learning testing: A diversity-guided method,” in Proceedings of
the 37th IEEE/ACM International Conference on Automated Software
Engineering, 2022, pp. 1-13.

X. Gao, Z. Wang, Y. Feng, L. Ma, Z. Chen, and B. Xu, “Benchmarking
robustness of ai-enabled multi-sensor fusion systems: Challenges and
opportunities,” arXiv preprint arXiv:2306.03454, 2023.

F. Toledo, D. Shriver, S. Elbaum, and M. B. Dwyer, “Deeper notions of
correctness in image-based dnns: Lifting properties from pixel to entities,”
in Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2023, pp. 2122-2126.

Y. Tian, W. Zhang, M. Wen, S.-C. Cheung, C. Sun, S. Ma, and
Y. Jiang, “Finding deviated behaviors of the compressed dnn models for
image classifications,” ACM Transactions on Software Engineering and
Methodology, vol. 32, no. 5, pp. 1-32, 2023.

P. Zhang, B. Ren, H. Dong, and Q. Dai, “Cagfuzz: coverage-guided
adversarial generative fuzzing testing for image-based deep learning
systems,” IEEE Transactions on Software Engineering, vol. 48, no. 11,
pp. 4630-4646, 2021.

M. Cheng, Y. Zhou, and X. Xie, “Behavexplor: Behavior diversity guided
testing for autonomous driving systems,” in Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2023, pp. 488-500.

I. Dunn, H. Pouget, D. Kroening, and T. Melham, “Exposing previously
undetectable faults in deep neural networks,” in Proceedings of the
30th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2021, pp. 56—66.

S. Hu, H. Wu, P. Wang, J. Chang, Y. Tu, X. Jiang, X. Niu, and
C. Nie, “Atom: Automated black-box testing of multi-label image
classification systems,” in 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE). 1EEE Computer Society,
2023, pp. 230-242.

G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zelji¢ et al., “The marabou framework for
verification and analysis of deep neural networks,” in International

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

(34]

[35]

[36]

(371

(38]

[39]

431

Conference on Computer Aided Verification.
452.

G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: a calculus for reasoning about deep neural networks,” Formal
Methods in System Design, pp. 1-30, 2021.

T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and
M. Vecheyv, “Ai2: Safety and robustness certification of neural networks
with abstract interpretation,” in 2018 IEEE Symposium on Security and
Privacy (SP). 1EEE, 2018, pp. 3-18.

0. Caelen, “A bayesian interpretation of the confusion matrix,” Annals
of Mathematics and Artificial Intelligence, vol. 81, no. 3-4, pp. 429-450,
2017.

G. Marsaglia, “Choosing a point from the surface of a sphere,” The
Annals of Mathematical Statistics, vol. 43, no. 2, pp. 645-646, 1972.
A. Kabaha and D. D. Cohen, “Verification of neural networks’ global
robustness,” Proceedings of the ACM on Programming Languages, vol. 8,
no. OOPSLAL, pp. 1010-1039, 2024.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual
recognition challenge,” International journal of computer vision, vol.
115, pp. 211-252, 2015.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818-2826.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

L. Huang, “Chinese traffic sign database.” [Online].
http://www.nlpr.ia.ac.cn/pal/trafficdata/recognition.html

R. van de Geijn and M. Myers, “Advanced linear algebra: Foundations
to frontiers,” Creative Commons NonCommercial (CC BY-NC), 2022.
P. Ashok, V. Hashemi, J. Kfetinsky, and S. Mohr, “Deepabstract:
Neural network abstraction for accelerating verification,” in International
Symposium on Automated Technology for Verification and Analysis.
Springer, 2020, pp. 92-107.

A. Boopathy, T.-W. Weng, P.-Y. Chen, S. Liu, and L. Daniel, “Cnn-
cert: An efficient framework for certifying robustness of convolutional
neural networks,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, no. 01, 2019, pp. 3240-3247.

E. Botoeva, P. Kouvaros, J. Kronqvist, A. Lomuscio, and R. Misener,
“Efficient verification of relu-based neural networks via dependency anal-
ysis,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 04, 2020, pp. 3291-3299.

R. Bunel, P. Mudigonda, I. Turkaslan, P. Torr, J. Lu, and P. Kohli, “Branch
and bound for piecewise linear neural network verification,” Journal of
Machine Learning Research, vol. 21, no. 2020, 2020.

Y. Y. Elboher, J. Gottschlich, and G. Katz, “An abstraction-based
framework for neural network verification,” in International Conference
on Computer Aided Verification. ~Springer, 2020, pp. 43-65.

M. Fazlyab, M. Morari, and G. J. Pappas, “Safety verification and
robustness analysis of neural networks via quadratic constraints and
semidefinite programming,” IEEE Transactions on Automatic Control,
2020.

D. Gopinath, G. Katz, C. S. Pasareanu, and C. Barrett, “Deepsafe: A data-
driven approach for checking adversarial robustness in neural networks,”
arXiv preprint arXiv:1710.00486, 2017.

I. B. Kadron, D. Gopinath, C. S. Pasareanu, and H. Yu, “Case study:
Analysis of autonomous center line tracking neural networks,” in Software
Verification, R. Bloem, R. Dimitrova, C. Fan, and N. Sharygina, Eds.
Cham: Springer International Publishing, 2022, pp. 104-121.

M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified
robustness to adversarial examples with differential privacy,” in 2079
IEEE Symposium on Security and Privacy (SP). 1EEE, 2019, pp. 656—
672.

J. Li, J. Liu, P. Yang, L. Chen, X. Huang, and L. Zhang, “Analyzing deep
neural networks with symbolic propagation: Towards higher precision and
faster verification,” in International Static Analysis Symposium. Springer,
2019, pp. 296-319.

W. Lin, Z. Yang, X. Chen, Q. Zhao, X. Li, Z. Liu, and J. He, “Robustness
verification of classification deep neural networks via linear programming,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 11418-11427.

Springer, 2019, pp. 443—

Available:



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

R. Mangal, A. V. Nori, and A. Orso, “Robustness of neural networks:
A probabilistic and practical approach,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER). 1EEE, 2019, pp. 93-96.

M. Mirman, T. Gehr, and M. Vechev, “Differentiable abstract interpreta-
tion for provably robust neural networks,” in International Conference
on Machine Learning. PMLR, 2018, pp. 3578-3586.

C. Pasdreanu, H. Converse, A. Filieri, and D. Gopinath, “On the proba-
bilistic analysis of neural networks,” in Proceedings of the IEEE/ACM
15th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, 2020, pp. 5-8.

L. H. Sena, I. V. Bessa, M. R. Gadelha, L. C. Cordeiro, and E. Mota,
“Incremental bounded model checking of artificial neural networks
in cuda,” in 2019 IX Brazilian Symposium on Computing Systems
Engineering (SBESC). 1EEE, 2019, pp. 1-8.

G. Singh, T. Gehr, M. Mirman, M. Piischel, and M. T. Vechev, “Fast
and effective robustness certification,” NeurIPS, vol. 1, no. 4, p. 6, 2018.
G. Singh, T. Gehr, M. Piischel, and M. Vechev, “Boosting robustness
certification of neural networks,” in International Conference on Learning
Representations, 2018.

——, “An abstract domain for certifying neural networks,” Proceedings
of the ACM on Programming Languages, vol. 3, no. POPL, pp. 1-30,
2019.

H.-D. Tran, D. M. Lopez, P. Musau, X. Yang, L. V. Nguyen, W. Xiang,
and T. T. Johnson, “Star-based reachability analysis of deep neural
networks,” in International Symposium on Formal Methods. Springer,
2019, pp. 670-686.

H.-D. Tran, X. Yang, D. M. Lopez, P. Musau, L. V. Nguyen, W. Xiang,
S. Bak, and T. T. Johnson, “Nnv: The neural network verification tool
for deep neural networks and learning-enabled cyber-physical systems,”
in International Conference on Computer Aided Verification. ~Springer,
2020, pp. 3-17.

M. Usman, D. Gopinath, and C. S. Pésdreanu, “Quantifyml: How good
is my machine learning model?” arXiv preprint arXiv:2110.12588, 2021.
S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal security
analysis of neural networks using symbolic intervals,” in 27th {USENIX}
Security Symposium ({USENIX} Security 18), 2018, pp. 1599-1614.

S. Webb, T. Rainforth, Y. W. Teh, and M. P. Kumar, “A statistical approach
to assessing neural network robustness,” arXiv preprint arXiv:1811.07209,
2018.

L. Weng, P--Y. Chen, L. Nguyen, M. Squillante, A. Boopathy, I. Oseledets,
and L. Daniel, “Proven: Verifying robustness of neural networks with a
probabilistic approach,” in International Conference on Machine Learning.
PMLR, 2019, pp. 6727-6736.

L. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel, D. Boning,
and 1. Dhillon, “Towards fast computation of certified robustness for relu
networks,” in International Conference on Machine Learning. PMLR,
2018, pp. 5276-5285.

E. Wong, F. Schmidt, J. H. Metzen, and J. Z. Kolter, “Scaling provable
adversarial defenses,” Advances in Neural Information Processing
Systems, vol. 31, 2018.

H. Wu, A. Ozdemir, A. Zeljic, K. Julian, A. Irfan, D. Gopinath, S. Fouladi,
G. Katz, C. Pasareanu, and C. Barrett, “Parallelization techniques for
verifying neural networks,” in Proc. 20th Int. Conf. on Formal Methods
in Computer-Aided Design (FMCAD), vol. 1. TU Wien Academic Press,
2020, pp. 128-137.

H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Efficient
neural network robustness certification with general activation functions,”
arXiv preprint arXiv:1811.00866, 2018.

M. von Stein and S. Elbaum, “Finding property violations through
network falsification: Challenges, adaptations and lessons learned from
openpilot,” in Proceedings of the 37th IEEE/ACM International Confer-
ence on Automated Software Engineering, 2022, pp. 1-5.

Y. Zhong, R. Wang, and S.-C. Khoo, “Expediting neural network
verification via network reduction,” arXiv preprint arXiv:2308.03330,
2023.

B. Paulsen and C. Wang, “Example guided synthesis of linear approxi-
mations for neural network verification,” in International Conference on
Computer Aided Verification. ~ Springer, 2022, pp. 149-170.

Z. Xue, S. Liu, Z. Zhang, Y. Wu, and M. Zhang, “A tale of two
approximations: Tightening over-approximation for dnn robustness
verification via under-approximation,” arXiv preprint arXiv:2305.16998,
2023.

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

(74

[75]

[76]

(771

[78]

[79]

[80]

432

M. Casadio, E. Komendantskaya, M. L. Daggitt, W. Kokke, G. Katz,
G. Amir, and I. Refaeli, “Neural network robustness as a verification
property: a principled case study,” in International Conference on
Computer Aided Verification. Springer, 2022, pp. 219-231.

Z. Zhao, G. Chen, J. Wang, Y. Yang, F. Song, and J. Sun, “Attack
as defense: Characterizing adversarial examples using robustness,” in
Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2021, pp. 42-55.

J. Wang, H. Qiu, Y. Rong, H. Ye, Q. Li, Z. Li, and C. Zhang, “Bet: black-
box efficient testing for convolutional neural networks,” in Proceedings
of the 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2022, pp. 164-175.

P. Huang, Y. Yang, M. Liu, F. Jia, F. Ma, and J. Zhang, “c-weakened
robustness of deep neural networks,” in Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2022, pp. 126-138.

Y. Yuan, Q. Pang, and S. Wang, “Revisiting neuron coverage for dnn
testing: A layer-wise and distribution-aware criterion,” in 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). 1EEE,
2023, pp. 1200-1212.

K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in proceedings of the 26th Symposium
on Operating Systems Principles, 2017, pp. 1-18.

A. Odena, C. Olsson, D. Andersen, and 1. Goodfellow, “Tensorfuzz: De-
bugging neural networks with coverage-guided fuzzing,” in International
Conference on Machine Learning. PMLR, 2019, pp. 4901-4911.

Y. Huang, L. Ma, and Y. Li, “Patchcensor: Patch robustness certification
for transformers via exhaustive testing,” ACM Transactions on Software
Engineering and Methodology, 2023.

S. Lee, S. Cha, D. Lee, and H. Oh, “Effective white-box testing of deep
neural networks with adaptive neuron-selection strategy,” in Proceedings
of the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2020, pp. 165-176.

J. Guo, Q. Zhang, Y. Zhao, H. Shi, Y. Jiang, and J. Sun, “Rnn-test:
Towards adversarial testing for recurrent neural network systems,” I[EEE
Transactions on Software Engineering, vol. 48, no. 10, pp. 4167-4180,
2021.

A. Zolfagharian, M. Abdellatif, L. C. Briand, M. Bagherzadeh, and
S. Ramesh, “A search-based testing approach for deep reinforcement
learning agents,” IEEE Transactions on Software Engineering, 2023.
Z. Li, X. Wu, D. Zhu, M. Cheng, S. Chen, F. Zhang, X. Xie, L. Ma, and
J. Zhao, “Generative model-based testing on decision-making policies,” in
2023 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 1EEE Computer Society, 2023, pp. 243-254.

H. You, Z. Wang, J. Chen, S. Liu, and S. Li, “Regression fuzzing for deep
learning systems,” in 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE). IEEE, 2023, pp. 82-94.

J. Yu, S. Duan, and X. Ye, “A white-box testing for deep neural networks
based on neuron coverage,” IEEE Transactions on Neural Networks and
Learning Systems, 2022.

L. Wang, X. Xie, X. Du, M. Tian, Q. Guo, Z. Yang, and C. Shen,
“Distxplore: Distribution-guided testing for evaluating and enhancing
deep learning systems,” in Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2023, pp. 68-80.

N. Papernot, P. McDaniel, 1. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia conference on computer and
communications security, 2017, pp. 506-519.

W. Chen, Z. Zhang, X. Hu, and B. Wu, “Boosting decision-based black-
box adversarial attacks with random sign flip,” in European Conference
on Computer Vision. Springer, 2020, pp. 276-293.

P-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth
order optimization based black-box attacks to deep neural networks
without training substitute models,” in Proceedings of the 10th ACM
workshop on artificial intelligence and security, 2017, pp. 15-26.

F. Zhang, S. P. Chowdhury, and M. Christakis, “Deepsearch: A simple
and effective blackbox attack for deep neural networks,” in Proceedings
of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2020, pp. 800-812.

S. Moon, G. An, and H. O. Song, “Parsimonious black-box adversar-
ial attacks via efficient combinatorial optimization,” in International
conference on machine learning. PMLR, 2019, pp. 4636-4645.



