
Lab 2: Released Wednesday, week 2 and due Tuesday, week 3

Note: This lab gives you all of the instructions for writing your code in Step 2, and then the
instructions for compiling in Step 3. You are not required to write all three programs before
compiling, feel free to write one, compile and test it, and then move on to the next.

Basic C++ Programming

Step 1: Getting Ready
Recall what environment you set up last week in lab 1. Navigate there, and then (similar to last
week), clone the Github repository. This time you’ll have your own, so first go to the course
Github (https://github.com/ucsb-cs16-1-u22) and make sure you can see a repository named
Lab02-yourgithubusername. If you can see that repository, open it up in your browser and go to
the green “Code” button near the upper right. Copy the SSH link for this repository (for more
instructions on this step, and future steps involving Github, check out
https://sites.cs.ucsb.edu/~maradowning/cs16/refs/gitbasics.html).

From here, run the following command in the folder you’d like your Lab02 folder to end up in:
git clone <link you just copied>

Check afterwards with ls to make sure the repository has been cloned properly, you should see
a new folder named Lab02-yourgithubusername. You can run the following command to enter
this directory and see the starter code files:
cd Lab02-yourgithubusername

https://github.com/ucsb-cs16-1-u22
https://sites.cs.ucsb.edu/~maradowning/cs16/refs/gitbasics.html

Step 2: Edit your C++ Files
This assignment consists of 3 problems, each of which is described below. The first two are
worth 30 points each, and the last is worth 40 points. Each should be solved in its own file and
all 3 must be submitted for full assignment credit.

Important: Do not plagiarize.

Important: For this lab, you are not allowed to use C++ syntax that has not yet been covered in
class. For example, we have not discussed functions or arrays yet, so you are not allowed to
use those (or other topics not yet covered) in this lab!

Program 1: descend.cpp
Write a program that takes 3 integer inputs from the user and prints them back in descending
order.

Hint: Nested if-else statements can be very helpful here!

Remember: You cannot use techniques we have not yet covered in class to solve this!

A session should look exactly like the following example (including whitespace and formatting),
with all manner of different values for the input and output. Note, the first line is the user input
and the second line what the program outputs.

-2 8 4

8 4 -2

Another example:

22 -41 22

22 22 -41

Program 2: block.cpp
Write a program that takes from the user some number of rows and number of columns, and
then prints out a block of characters that is based on these 2 parameters. The program should
keep asking the user for input, and printing out the result until the user enters zero (0) for each
of the input parameters.

A session should look exactly like the following example (including whitespace and formatting),
with all manner of different values for the input and output. Each line printed by the program
should include a newline at the end, but have no other trailing whitespace (i.e. no extra space
characters at the end of the line).

Enter number of rows and columns:

10 10

X.X.X.X.X.X.X.X.X.X.

X.X.X.X.X.X.X.X.X.X.

X.X.X.X.X.X.X.X.X.X.

X.X.X.X.X.X.X.X.X.X.

X.X.X.X.X.X.X.X.X.X.

X.X.X.X.X.X.X.X.X.X.

X.X.X.X.X.X.X.X.X.X.

X.X.X.X.X.X.X.X.X.X.

X.X.X.X.X.X.X.X.X.X.

X.X.X.X.X.X.X.X.X.X.

Enter number of rows and columns:

3 7

X.X.X.X.X.X.X.

X.X.X.X.X.X.X.

X.X.X.X.X.X.X.

Enter number of rows and columns:

0 0

Program 3: pi.cpp
Write a C++ program that approximates the value of the constant pi (π), based on the Leibniz
formula for estimating π. The formula is shown below and can go on for some arbitrary
n-number of terms:

1 − 1/3 + 1/5 − 1/7 + 1/9 − . . . = π/4

The formula works best for high values of n.

The program takes an input from the user for the value of n, which determines the number of
terms in the approximation. The program outputs that calculation according to the formula. You
must also include a loop that allows the user to repeat this calculation for new values of π until
the user says they want to end the program by issuing an input of 0.

The number of terms is assumed to not include the added 1 in the formula. In other words,

If n = 1, then π = 4 * (1 - (1/3))
If n = 2, then π = 4 * (1 - (1/3) + (1/5))
If n = 2, then π = 4 * (1 - (1/3) + (1/5) - (1/7))
And so on. . .

Here is a “skeleton” program to help you get started:

#include <iostream>

#include <cmath>

using namespace std;

int main() {

int terms = 1;

double pivalue = 0;

// You also need to do a loop here that keeps asking for a number

// of terms and then approximates pi!

// HINT: Part of what we want to do is decide the sign of a number.

// There are multiple ways to do this. One way we can do this is to

// use cmath for its pow() function, which calculates x raised to

// the power y when used like: pow(x, y)

return 0;

}

The program should print a string of text to the terminal before getting each piece of input from
the user. A session should look like the following example (including whitespace and
formatting), with all manner of different values for the input and output. Note that each line
printed by the program should include a newline at the end, but have no other trailing
whitespace (i.e. no extra space characters at the end of the line). When the user enters 0, there
is no approximation given—the program just ends there. It is OK if your approximation results
print with a different number of decimal places as the ones in this example (though you should
have at least a couple decimal places no matter what).

Enter the number of terms to approximate (or zero to quit):

5

The approximation for Leibniz's Formula is 2.97605 using 5 terms.

Enter the number of terms to approximate (or zero to quit):

1000

The approximation for Leibniz's Formula is 3.14259 using 1000 terms.

Enter the number of terms to approximate (or zero to quit):

0

Step 3: Compile your Code
To compile your programs, we will use the g++ command as we described in previous labs. The
following 3 commands will compile the 3 source files:

g++ -std=c++11 -Wall descend.cpp -o descend

g++ -std=c++11 -Wall block.cpp -o block

g++ -std=c++11 -Wall pi.cpp -o pi

If compilation is successful, you will not see any output from the compiler. You can then use the
following commands to run your programs:

./descend

./block

./pi

If you encounter an error, use the compiler hints and examine the line in question. If the
compiler message is not sufficient to identify the error, you can search online to see when the
error occurs in general.

Remember to re-compile after you make any changes to your C++ source code.

Step 4: Submit your Code
There is a more detailed (and more general) set of instructions on the course webpage, under
Quick References: https://sites.cs.ucsb.edu/~maradowning/cs16/refs/gitbasics.html. If you are
new to git/github, I suggest reading through this guide as well when you submit your
assignment.

Once you have finished your code (or any time you want to save your code to Github and take a
break), first run git status to see which files you have modified/created. From there, add any
files you want to end up on Github by running the following command:

git add <filename>

For this lab, most likely you will run three add commands:

git add descend.cpp

git add block.cpp

git add pi.cpp

Please do not add any executable files you created by compiling your code. However, if you do
end up accidentally adding them, don’t worry about it for now. In later labs I will take off a couple
points for adding these files, but in these labs I’ll just mention it to make sure you’re aware.

Once you’ve added all the files you want, you will need to commit them. Run:

git commit -m "Your commit message here"

Please write a descriptive commit message within the quotes, something like “Finished Lab02” if
you are done, or something more specific if you’re pushing code partway through.

Finally, run:

git push

to push your changes to Github. Once you’ve run this command, make sure to go to your
repository in your web browser and check that the updated files are there (you might have to
reload).

Finally, once you’re completely finished with the lab, fill out the Lab02 submission on
Gradescope. It only asks you for a list of people you discussed the lab with (remember,
discussion of the lab is ok but do not give classmates answers), the number of hours you spent,
and has a checkbox to indicate that you’re done. I will use this as an indication that your code is
pushed to Github and I can begin grading.

https://sites.cs.ucsb.edu/~maradowning/cs16/refs/gitbasics.html

