
Week 6, Lecture 2
July 27, 2022

C++ Primer 2.3



Multiple File Streams to Same File

● Once you open an output stream to a file, the contents are deleted
○ If you had an input stream open before that, but try to read after the file is opened for writing, 

you will get nothing
● When you print to a file, the contents are not always put there immediately

○ Reading from an output file after writing to it may not yet get the new content, if the output file 
stream is still open



Pointers



First: Stack and Heap

● Memory for any program is divided into two sections: the Stack and the Heap
● Everything I have said so far about memory is for the Stack

○ Must know size of variables to be stored at compile time
○ Cannot change the size of variables already stored (arrays)
○ Variables are local to the curly braces where they are defined

■ Deleted afterwards
● When we create a variable in any of the ways we've learned so far, it goes on 

the Stack
○ Except for strings, but those are special



First: Stack and Heap

● Memory for any program is divided into two sections: the Stack and the Heap
● We've seen a few memory addresses on the stack

○ Call by reference uses these to allow a function to change the value of a variable passed to it 
outside of the function as well

○ If we accidentally print a whole array rather than looping and printing each element, the 
address of the array is printed

● On the stack, we can use addresses but mostly we use variable names to 
access variables

● If we want to access the heap, we have to do it by address



First: Stack and Heap

● Memory for any program is divided into two sections: the Stack and the Heap
● The size of variables stored on the heap does not have to be known at 

compile time
○ We can, for instance, take in the length of an array from user input

● We have to keep track of the address of variables on the heap ourselves, in 
the form of pointers

● A variable on the heap is not deleted at the end of the curly braces where the 
variable was declared



First: Stack and Heap

● A variable on the heap is not deleted at the end of the curly braces where the 
variable was declared

○ However, the pointer that is storing that address is deleted
■ We need to make sure that we don't lose access to the variables we have kept on the 

heap
■ If we delete all pointers to a variable on the heap without deleting the variable itself, we 

get a memory leak
● The computer will still believe that memory is being used, and prevent your 

program and other programs from using it
● Since we do not have the address, we cannot retrieve or delete that variable



Stack

int arr[4] = {3, 6, 4, 1};

int sum = 0;

for(int i = 0; i < 4; ++i){

sum += arr[i];

}

Stack Pointer →



Stack

int arr[4] = {3, 6, 4, 1};

int sum = 0;

for(int i = 0; i < 4; ++i){

sum += arr[i];

}

3

6

4

1
Stack Pointer →

arr[0]

arr[1]

arr[2]

arr[3]



Stack

int arr[4] = {3, 6, 4, 1};

int sum = 0;

for(int i = 0; i < 4; ++i){

sum += arr[i];

}

3

6

4

1

0
Stack Pointer →

arr[0]

arr[1]

arr[2]

arr[3]

sum



Stack

int arr[4] = {3, 6, 4, 1};

int sum = 0;

for(int i = 0; i < 4; ++i){

sum += arr[i];

}

3

6

4

1

0

0
Stack Pointer →

arr[0]

arr[1]

arr[2]

arr[3]

sum

i



Stack

int arr[4] = {3, 6, 4, 1};

int sum = 0;

for(int i = 0; i < 4; ++i){

sum += arr[i];

}

3

6

4

1

3

1
Stack Pointer →

arr[0]

arr[1]

arr[2]

arr[3]

sum

i



Stack

int arr[4] = {3, 6, 4, 1};

int sum = 0;

for(int i = 0; i < 4; ++i){

sum += arr[i];

}

3

6

4

1

9

2
Stack Pointer →

arr[0]

arr[1]

arr[2]

arr[3]

sum

i



Stack

int arr[4] = {3, 6, 4, 1};

int sum = 0;

for(int i = 0; i < 4; ++i){

sum += arr[i];

}

3

6

4

1

13

3
Stack Pointer →

arr[0]

arr[1]

arr[2]

arr[3]

sum

i



Stack

int arr[4] = {3, 6, 4, 1};

int sum = 0;

for(int i = 0; i < 4; ++i){

sum += arr[i];

}

3

6

4

1

14

4
Stack Pointer →

arr[0]

arr[1]

arr[2]

arr[3]

sum

i



Stack

int arr[4] = {3, 6, 4, 1};

int sum = 0;

for(int i = 0; i < 4; ++i){

sum += arr[i];

}

3

6

4

1

14

5
Stack Pointer →

arr[0]

arr[1]

arr[2]

arr[3]

sum

i



Stack

int arr[4] = {3, 6, 4, 1};

int sum = 0;

for(int i = 0; i < 4; ++i){

sum += arr[i];

}

3

6

4

1

14
Stack Pointer →

arr[0]

arr[1]

arr[2]

arr[3]

sum



Stack

int arr[4] = {3, 6, 4, 1};

int sum = 0;

for(int i = 0; i < 4; ++i){

sum += arr[i];

}

Stack Pointer →



Stack

int sum(int a, int b, int c){

int result = a + b + c;

return result;

}

int main(){

int x = 10;

int y = 20;

int z = 30;

int res = sum(x, y, z);

}

Stack Pointer →



Stack

int sum(int a, int b, int c){

int result = a + b + c;

return result;

}

Within main:
int x = 10;

int y = 20;

int z = 30;

int res = sum(x, y, z);

10

20

30

??
Stack Pointer →

x

y

z

res



Stack

int sum(int a, int b, int c){

int result = a + b + c;

return result;

}

Within main:
int x = 10;

int y = 20;

int z = 30;

int res = sum(x, y, z);

10

20

30

??

10

20

30

60
Stack Pointer →

x

y

z

res

a

b

c

result



Stack

int sum(int a, int b, int c){

int result = a + b + c;

return result;

}

Within main:
int x = 10;

int y = 20;

int z = 30;

int res = sum(x, y, z);

10

20

30

60
Stack Pointer →

x

y

z

res



Pointers from the Stack to the Heap

int x = 10;

int y = 20;

int* z = new int(30);

10

20

Stack Pointer →

x

y

z

30



Pointers from the Stack to the Heap

int x = 10;

int y = 20;

int* z = new int(30);

The thing we are pointing
to is an integer

10

20

Stack Pointer →

x

y

z

30



Pointers from the Stack to the Heap

int x = 10;

int y = 20;

int* z = new int(30);

The asterisk indicates
that this is a pointer to a
variable of the type specified, not 
a variable of that type itself.

10

20

Stack Pointer →

x

y

z

30



Pointers from the Stack to the Heap

int x = 10;

int y = 20;

int* z = new int(30);

As usual, the name.

This time though, this is the name
of the pointer variable.

10

20

Stack Pointer →

x

y

z

30



Pointers from the Stack to the Heap

int x = 10;

int y = 20;

int* z = new int(30);

"new" tells the compiler
that this is a variable on the 
Heap, not the Stack.

10

20

Stack Pointer →

x

y

z

30



Pointers from the Stack to the Heap

int x = 10;

int y = 20;

int* z = new int(30);

This is necessary to tell
the compiler which type of 
new variable to make.

10

20

Stack Pointer →

x

y

z

30



Pointers from the Stack to the Heap

int x = 10;

int y = 20;

int* z = new int(30);

Just slightly different
syntax to initialize an int
with a value.

10

20

Stack Pointer →

x

y

z

30



Another Option

int x = 10;

int y = 20;

int* z = new int;

*z = 30;

10

20

Stack Pointer →

x

y

z

30



Another Option

int x = 10;

int y = 20;

int* z = new int;

*z = 30;

Just the same as on the Stack,
we can declare an int on the Heap
and initialize it later.

Until it is initialized, it will contain
whichever bits were previously there. 

10

20

Stack Pointer →

x

y

z

30



Another Option

int x = 10;

int y = 20;

int* z = new int;

*z = 30;

The star is used to dereference
the pointer: interact with the value
it is pointing to, not the address. 

10

20

Stack Pointer →

x

y

z

30



Another Option

int x = 10;

int y = 20;

int* z = new int;

z = 30;

If we forget to dereference the 
pointer while using it, we are 
actually interacting with the address
in memory that the pointer points to.

10

20

Stack Pointer →

x

y

z

Trying to point 

to address 30



Another Option

int x = 10;

int y = 20;

int* z = new int;

*z = 30;

delete z;

When you are done with a variable
on the heap, you must delete it.

10

20

Stack Pointer →

x

y

z

30



Another Option

{
int x = 10;
int y = 20;
int* z = new int;
*z = 30;

}

If you forget to delete the variable, 
and the block of code where the 
pointer was declared ends,
you have a memory leak.

Stack Pointer →

30



Daily “Quiz”

● Please open up your device, go to Gradescope, and we’ll spend the next 
couple of minutes doing the quiz

○ Feel free to discuss with your neighbors
○ Reminder: the quizzes are not graded on correctness, just completion

● Put your device down or close the lid when you are done
○ We’ll spend the last couple of minutes discussing the quiz as a class


