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Abstract. With the growing prevalence of neural networks in computer
systems, addressing their dependability has become a critical verification
problem. In this paper, we focus on quantitative robustness verification,
i.e., whether small changes to the input of a neural network can change its
output. In particular, we perform quantitative symbolic analysis, where
the goal is to identify how many inputs in a given neighborhood are mis-
classified. We target quantized neural networks, where all values in the
neural network are rounded to fixed point values with limited precision.
We employ symbolic execution and model counting to achieve quantita-
tive verification of user-defined robustness properties where the verifier
will report not only whether the robustness properties are satisfied for
the given neural network, but also how many inputs violate them. This
measure enables comparison of non-robust networks by assessing the level
of robustness, which is not possible with existing quantized network ver-
ifiers. We implement and evaluate our approach as a tool called VerQ2.
To the best of our knowledge, VerQ2 is the first quantitative verifier for
quantized neural networks.

Keywords: Formal Verification · Model Counting · Neural Networks.

1 Introduction

Neural networks are becoming increasingly common in safety critical domains
like medicine and automotive industry. For safety critical applications, tradi-
tional techniques for evaluating effectiveness of neural networks, such as accu-
racy on a previously unseen data set, are not sufficient. It is necessary to evaluate
the dependability of neural networks—for example, checking if (potentially ad-
versarial) small changes to the input can change the output of a network, and,
furthermore determining how many inputs exist within a perturbation region
that can trigger an unexpected output.

A full precision neural network uses floating point values, which is compu-
tationally intensive and may not be feasible in cases where storage space or
processing power is limited [5]. Quantized networks address this limitation by
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using fixed point numbers. These networks can thus be implemented using less
storage, and can also be computed faster [22]. The most extreme example of this
type of network is a binary neural network, where each value is 1 or 0. Quan-
tized networks are commonly used in mobile, embedded, and IoT devices where
memory and power are limited [22].

In the safety critical healthcare domain, the use of machine learning models
is expanding [28] including systems that are expected to make and execute a
decision without physician involvement, such as a device that is implanted into
a patient’s body. The FDA maintains strict requirements for device approval [1].
Additionally, implanted devices have strict power and size requirements which
make quantized networks a valuable method of storing and executing neural
networks in the medical domain.

Thus, automated verification of quantized neural networks is a critically im-
portant area of research. In this paper, we focus particularly on quantitative
verification of quantized networks. Given a correctly classified input and an
allowed perturbation around that input, traditional robustness verification eval-
uates whether or not any inputs exist in the region that are classified differ-
ently (incorrectly). Quantitative robustness verification goes further to count
how many inputs in that region are classified differently. As we mention in our
related work discussion, there are traditional verifiers for floating point networks
and quantized networks, and there are quantitative verifiers for floating point
networks and binary precision networks. However, to the best of our knowledge,
this paper is the first to address quantitative robustness for quantized networks
with greater than binary precision.

In this paper, we present a quantitative verifier for quantized neural networks,
capable of handling different levels of precision. Our major contributions, imple-
mented in our tool VerQ2 (VERifier for Quantitative robustness of Quantized
neural networks), are:

– A quantitative robustness verification approach for quantized neural net-
works based on symbolic execution and model counting.

– Improvements to constraint solving during symbolic execution for neural
networks based on 1) Abstract symbolic execution, and 2) Model generation
at symbolic execution tree nodes.

– Translation rules from fixed point arithmetic computations to integer con-
straints.

– Experimental evaluation of VerQ2 and empirical comparison of model coun-
ters on constraints generated by neural networks.

We test our quantitative robustness verification tool VerQ2 on networks
trained from two medical datasets from the UCI Machine Learning Reposi-
tory [16]. Our experiments show the techniques we present improve the per-
formance of quantitative symbolic execution over our baseline implementation
and perform better than sampling-based approaches including Provero [8].

Motivating Example. Let us look at two networks, both trained with the Parkin-
son’s dataset [16, 27] to detect Parkinson’s disease from voice data. The networks
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take in inputs with 22 input features, each one corresponding to a different mea-
surement gathered from the voice of a patient. Network A has one hidden layer
of size 60, and an accuracy of 84.21%. Network B has two hidden layers of size
15, and an accuracy of 89.47%. We evaluate robustness of these two networks
for a robustness region using data generated from a patient who has Parkinson’s
disease, where two of the 22 input features are perturbed and can take on any
possible value within the expected input range.

Within the given perturbation region, both networks classify some inputs
incorrectly. For a traditional verifier, this would be the extent of the robustness
check results. However, with our quantitative verifier VerQ2, we can further show
that out of 1089 possible inputs in the perturbation region (33 allowed values per
perturbed input feature), network A misclassifies only 12, whereas network B
misclassifies 273. We can alternately analyze an average of multiple robustness
regions using the quantitative robustness definition we provide in this paper
(Section 2.1). Our quantitative robustness definition provides a robustness value
between 0 and 1 (1 corresponds to 100% robustness—no input in the robustness
region violates the robustness property). When we compare 11 robustness regions
for networks A and B using VerQ2, we find network A has an average robustness
of 0.904, whereas network B has an average robustness of 0.954. Depending
on the importance of an individual input, we may decide either to prioritize
overall higher robustness or higher robustness in a key instance when choosing
which network to use. Finally, we can also compare the least robust input from
a set of inputs—network A has an input with 0.427 robustness whereas for
network B, for the set of inputs we analyzed, the minimum robustness is 0.749.
Quantitative robustness analysis enables us to make these types of comparisons
among networks, which are not possible with traditional robustness analysis.

Related Work. There is a significant amount of prior work on non-
quantitative verification of full precision neural networks [13, 14, 17, 18, 26, 31]
and there is a limited amount of prior work on quantitative verification of full
precision neural networks [8, 12, 21, 29]. These employ a variety of techniques,
including formal verification, sampling, and abstraction.

One of the techniques used for scalability in symbolic verification of full-
precision networks is the approximation of floating point computations using real
values. However, this approach can lead to incorrect verification results [25]. Our
approach avoids this type of erroneous analysis by avoiding real approximations
of the quantized values and taking into account how the values will behave with
rounding (Section 3.2).

For quantitative verification of full precision networks, one approach is to
use statistical sampling methods to obtain a probabilistically sound result for
quantitative robustness [8, 12]. We choose one such approach [8] for experimental
comparison as it uses higher precision in published analysis.

There is also some prior work on verification methods for binarized neural
networks [3, 9, 24, 36]. These have a computationally simpler task compared to
higher precision quantized network verifiers such as ours.
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To the best of our knowledge, there is no prior work on quantitative verifi-
cation for quantized networks. In terms of traditional (non-quantitative) verifi-
cation of quantized networks, there are some verifiers that use SMT constraint
solving [20, 23]. However, as these are traditional verifiers, the information they
can provide is limited. We discuss this drawback in Section 2 and show how our
quantitative verification approach offers more valuable results.

As VerQ2 is the first tool to produce quantitative robustness results for quan-
tized networks, experimental comparison with existing tools is limited. Our ap-
proach is faster and can handle larger networks than [21], which computes exact
counts for constraints on floating point networks. For comparison, we implement
an algorithm proposed for quantitative verification of full precision networks [8]
(with modifications for quantized networks), and show that our approach per-
forms better in Section 4.

2 Quantitative Robustness Formalization

Fig. 1: A feedforward network with
two input features (x0, x1), two out-
puts (y0, y1).

We use F to denote the set of all floating
point numbers, and I to denote the set
of fixed point numbers, with subscripts q
and d indicating the total bit length and
the number of fractional bits, e.g., Iq,d.

Fig. 1 shows a small example network
where weights are marked along their re-
spective arrows, biases are marked above
respective neurons. A neural network N
takes an input X consisting of N fea-
tures, ⟨x0, · · · , xN−1⟩, has K hidden lay-
ers where each hidden layer k with size Jk
consists of neurons h0,k, · · · , h(Jk−1),k, and returns values of J output neurons
y0, · · · , yJ−1. In a full precision network, x0, · · · , xN−1 ∈ F, y0, · · · , yJ−1 ∈ F,
and all h ∈ F. For computing the values of the hidden and output neurons, the
connections between each neuron in different layers have weights wi,j,k where
the ith neuron in kth layer and jth neuron in (k + 1)th layer is connected, and
each neuron i in layer j has bias value bi,j . We use the ReLU activation function
in our model: ReLU (x) = max(x, 0). For classification tasks, the output neuron
with the highest value determines the class—if yj has the highest value, the
classification is class j.

The equations below describe how the values are computed in a non-quantized
(using floating point numbers, F) neural network:

hj,0 = ReLU (Σn
i=0wi,j,0xi + bj,0) (1)

hj,k = ReLU
(
Σn

i=0wi,j,khi,(k−1) + bj,k
)

(2)

yj = Σn
i=0wi,j,Khi,K−1 + bj,K (3)

Quantization maps variables of the network (neuron values, weights, bias
values, etc.) to a limited precision. We use Lmin, Lmax ∈ I to denote the limits
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of the quantized values (minimum and maximum possible values represented by
the chosen fixed point size): Lmin = −(2q−d−1) and Lmax = 2q−d−1 − 2−d for
quantization Iq,d. When working with quantized networks, the computation of
nodes must not only take into account the ReLU activation functions, but also
the rounding of results to maintain limited precision and avoid overflow. Due to
the higher precision to avoid overflow during the computation, the ReLU piece
of the above equations (1) and (2) is computed as follows:

ReLU(expr) =


0, if expr ≤ 0

Lmax, if expr ≥ Lmax

expr, otherwise
(4)

Additionally, Equation (3) is replaced with the following for quantized networks:

yj =


Lmin, if Σn

i=0wi,j,Khi,K−1 + bj,K ≤ Lmin

Lmax, if Σn
i=0wi,j,Khi,K−1 + bj,K ≥ Lmax

Σn
i=0wi,j,Khi,K−1 + bj,K , otherwise

(5)

Due to the multiplication of fixed points, results of Σn
i=0wi,j,khi,k−1 + bj,k will

contain double the original fractional bits. The rounding to account for this will
be shown in Section 3.2.

2.1 Quantitative Robustness

Fig. 2: Two hypothetical perturbation re-
gions for the same input for two different
networks. Both networks are robust for re-
gion 1 but not region 2. However, the net-
work on the right is less robust than the net-
work on the left.

In neural network verification, lo-
cal robustness is measured by
checking if any small perturba-
tions made to the input change
the output (classification result).
If there exists such a perturba-
tion that changes the output, then
the network is not robust on that
input. However, this yes/no an-
swer does not give any informa-
tion about how many of the per-
turbations change the output. For
example, in Fig. 2, both examples
would be determined not robust
for region 2 by a traditional verifier, whereas a quantitative verifier can distin-
guish the levels of robustness for these two networks.

We provide a definition for quantitative robustness which measures the pro-
portion of inputs within a given perturbation region which do not change the
output. For a given neural network N and a perturbation region containing input
Xc within the region with known correct classification, we define the quantitative
robustness measure R(N , SPerturbRegion) as follows:

R(N , SPerturbRegion) = |SRobustSet |/|SPerturbRegion | where

SRobustSet = {X̃ | argmaxN (X̃) = argmaxN (Xc) ∧ X̃ ∈ SPerturbRegion}
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In the definition above, SPerturbRegion denotes the set of all inputs within
the perturbation region, and SRobustSet denotes the subset of those where the
output of N does not change. We call remaining inputs potentially adversarial
inputs, and we define SAdversarialSet as follows: SAdversarialSet = SPerturbRegion \
SRobustSet . This is a general form of robustness definition that can represent
attacks such as one or two-pixel attacks for images, or general L∞ ball constraints
over the input [32, 33].

A network with a higher number of misclassified inputs (i.e., larger
|SAdversarialSet |) in a given perturbation region is less robust (and thus more
prone to adversarial attacks) than a network with fewer misclassified inputs in
the same region.

3 Quantitative Symbolic Robustness Verification

In this section, we present our quantitative symbolic verification approach for
quantized neural networks. The two major techniques we use for quantitative
verification of neural networks are symbolic execution and model counting. Sym-
bolic execution is a verification technique in which a program is evaluated by
constructing a tree of all of the possible paths through the program, where each
node in the tree corresponds to a branch condition in the program [6]. A sym-
bolic state and path condition are recorded at each node of the tree; the symbolic
state keeps track of the value of each variable at that point in the program and
the path condition keeps track of all of the constraints necessary to reach that
point in the program. We denote the path condition as a set of constraints Cp,
comprised of clauses c0, · · · , ct−1. At a given branch, ct is the new clause being
introduced. It is possible that at any branch point, one or more of the possible
paths may be infeasible, and if a path is infeasible there is no need to traverse
further down. The feasibility of a path is checked with a constraint solver, which
checks if the path constraints at each node are satisfiable.

The next technique that we use is model counting. A model counting con-
straint solver returns the number of solutions to a satisfiable constraint, or 0
if the constraint is unsatisfiable. Using symbolic execution and model counting
one can determine which execution paths are more likely than others [19].

3.1 Symbolic Analysis for Quantitative Robustness

Our quantitative verifier uses symbolic execution to explore all possible paths
of a neural network and model counting to compute the quantitative robustness
measure. In this paper we focus only on networks with ReLU (Rectified Linear
Unit) activation functions, which is a common activation function [26]. We use
Z3’s linear integer arithmetic SMT solver [15] to evaluate the path conditions
and determine if each branch is feasible. The fixed point values are converted
into integers, and we create SMT formulas that are equivalent to the fixed point
conditions they are describing (Section 3.2). We chose this encoding, rather than
bit-vectors [10], to allow for the use of linear integer arithmetic model counters.
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Algorithm 1 QuantSymRobustness(Cin, Cout, N )
▷ Symbolic analysis for computing quantitative robustness of a neural network
▷ Calls QuantSymExec and a model counter (Count)

Input: Cin : set of all user constraints on inputs, derived from SPerturbRegion ; Cout : set of all user
constraints on outputs, representing the robustness constraints from SRobustSet ; N : the neural
network under analysis
Output: Quantitative robustness metric R

1: PerturbRegionSize ← Count(Cin) ▷ Computing |SPerturbRegion |
2: RobustSetSize ← QuantSymExec(N , Cin, Cout) ▷ Computing |SRobustSet |
3: return RobustSetSize/PerturbRegionSize ▷ Computing |SRobustSet |/|SPerturbRegion |

We use syntax Cin and Cout to represent constraints on input perturbations
and expected output, respectively. We use a model counting constraint solver
on Cin to get the total number of possible inputs within that region. Then, we
use symbolic execution to capture all possible behaviors of the neural network
N for all inputs that satisfy Cin.

We show the overall quantitative verification approach in Algorithm 1, with
symbolic execution detailed in Algorithm 2.

The symbolic execution process described in Algorithm 2 is as follows:

1. On line 1, a symbolic expression is created for the node value: the result of
multiplying weights and adding the bias, before the ReLU is applied.

2. Lines 3–20 show the branching that occurs for all nodes except the last
output node. There are three possible branches—expr could be ≤ the lower
limit Ll (0 for ReLU activated nodes, Lmin for output nodes), expr could be
≥ the upper limit Lmax, or expr could be between the two limits. In each
case, the stored expression for the node is updated and a recursive call is
made to continue exploring the tree given that outcome for the value of node.
The if statement in lines 16–19 includes the addition of constraints to the
path constraint which make sure Expr(node) is constrained to the proper
result of rounding expr (Section 3.2).

3. Lines 22–35 mimic 3–20 in structure, but the gathered constraint is conjoined
with Cout and a call is made to Count to get a count of how many distinct
input vectors (X̃) satisfy the gathered constraint.

The helper functions employed in Algorithm 2 are as follows: NewSym-
Var() creates a new symbolic variable name unique to the current node of the
tree; Next(node) returns the next node from the network, nodes are ordered
by layer (from beginning to end), and from 0 to j ascending within each layer;
Expr(node) returns the symbolic expression associated with the node, and can
be used to change the symbolic expression (this accesses and modifies the sym-
bolic state); isOutput(node) returns True only if the node is an output node;
isLast(node) returns True only if the node is the last node in the order; Con-
structExpr is used to compute the multiplication of previous layer nodes by
weights and add the bias value, and is shown in Algorithm 4.

We use four different model counting tools to obtain the number of satis-
fying solutions to a constraint. Three of these are model counters: ABC [4],
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Algorithm 2 QuantSymExec(N , Cp, Cout, node)
▷ Quantitative symbolic execution of a neural network
▷ Called by QuantSymRobustness (Algorithm 1); Calls IsSat (Algorithms 3, 5), CreateExpr
(Algorithm 4), and Count; Uses helper functions NewSymVar, Next, Expr, isOutput, isLast

Input: Cp: Current path constraint on symbolic input values; Cout : Constraint on output nodes;
N : the neural network under analysis; node: current node with indices j, k
Output: Number of robust inputs within the perturbation region

1: expr ←ConstructExpr(j, k)
2: if ¬isLast(node) then
3: RobSS ← 0
4: Ll ← 0
5: if isOutput(node) then
6: Ll ← Lmin

7: end if
8: if IsSat(Cp, expr < 2dLl + 2d−1) then ▷ exprrounded ≤ Ll

9: Expr(node) ← Ll

10: RobSS ← RobSS + QuantSymExec(N , Cp ∧ expr < 2dLl + 2d−1, Cout, Next(node))
11: end if
12: if IsSat(Cp, expr ≥ 2dLmax − 2d−1) then ▷ exprrounded ≥ Lmax

13: Expr(node) ← Lmax

14: RobSS← RobSS + QuantSymExec(N , Cp∧expr ≥ 2dLmax−2d−1, Cout, Next(node))
15: end if
16: if IsSat(Cp, expr ≥ 2dLl + 2d−1 ∧ expr < 2dLmax − 2d−1) then ▷

exprrounded > Ll ∧ exprrounded < Lmax

17: Expr(node) ← NewSymVar() ▷ create a new symbolic variable for node
18: RobSS ← RobSS + QuantSymExec(N , Cp ∧ expr ≥ 2dLl + 2d−1 ∧ expr < 2dLmax −

2d−1 ∧ expr < 2dExpr(node) + 2d−1 ∧ expr ≥ 2dExpr(node)− 2d−1, Cout, Next(node))
19: end if
20: return RobSS
21: else
22: RobSS ← 0
23: if IsSat(Cp, expr < 2dLmin + 2d−1) then ▷ exprrounded ≤ Ll

24: Expr(node) ← Ll

25: RobSS ← RobSS + Count(Cp ∧ expr < 2dLmin + 2d−1 ∧ Cout)
26: end if
27: if IsSat(Cp, expr ≥ 2dLmax − 2d−1) then ▷ exprrounded ≥ Lmax

28: Expr(node) ← Lmax

29: RobSS ← RobSS + Count(Cp ∧ expr ≥ 2dLmax − 2d−1 ∧ Cout)
30: end if
31: if IsSat(Cp, expr ≥ 2dLmin + 2d−1 ∧ expr < 2dLmax − 2d−1) then ▷

exprrounded > Ll ∧ exprrounded < Lmax

32: Expr(node) ← NewSymVar() ▷ create a new symbolic variable for node
33: RobSS ← RobSS + Count(Cp ∧ expr ≥ 2dLl +2d−1 ∧ expr < 2dLmax− 2d−1 ∧ expr <

2dExpr(node) + 2d−1 ∧ expr ≥ 2dExpr(node)− 2d−1 ∧ Cout)
34: end if
35: return RobSS
36: end if

Barvinok [34], and LattE [7]. The fourth is Z3 [15], which can be used to count
satisfying models by generating a satisfying model, adding the negation of the
model to the constraint, and looping until the constraint is unsatisfiable. We
describe the model counters in more detail in Section 3.4.

3.2 Fixed Point Rounding Constraints

As discussed in Section 2, after the multiplication of node values by weights,
the result has double the fractional bits, and must be rounded. We translate



Quantitative Verification for Quantized Networks 9

the fixed-point inequality expressions (used when deciding how the ReLU im-
pacts each internal node value) into equivalent integer expressions for symbolic
execution of the network.

The fixed point values themselves are translated to integers—for example, a
concrete fixed point value 0010.1100 (2.75) can be represented as a concrete inte-
ger value 00101100 (44) by eliminating the decimal point. We use this approach
in transforming fixed point computations to equivalent integer constraints during
symbolic execution of the network.

For the following formulas, d will represent the number of fractional bits in
the chosen fixed point representation and expr ∈ Iq,2d will represent the value to
be rounded. The rounding rule is as follows, with & representing bitwise AND
operation, and ≫ representing arithmetic right shift:

exprrounded ∈ Iq,d =

{
expr ≫ d, if expr & (2d − 1) < 2d−1

(expr ≫ d) + 1, if expr & (2d − 1) ≥ 2d−1
(6)

The following four equations provide equivalences between the expression we
wish to evaluate, using the rounded result of expr, and the equivalent expression
without using the rounded result.

exprrounded < x ⇔ expr < 2dx− 2d−1

exprrounded ≤ x ⇔ expr < 2dx+ 2d−1

exprrounded > x ⇔ expr ≥ 2dx+ 2d−1

exprrounded ≥ x ⇔ expr ≥ 2dx− 2d−1

(7)

It is also necessary during the symbolic execution of the network to use
expr rounded as an argument in future layer computations. This is handled by
setting expr rounded equal to a new symbolic variable n, and then using n in any
place expr rounded would appear:

exprrounded = n ⇔ expr < 2dn+ 2d−1 ∧ expr ≥ 2dn− 2d−1 (8)

3.3 Constraint Solving Optimizations

The most time consuming computation during symbolic execution of neural net-
works is in evaluating the satisfiability of path constraints Cp (which we do using
Z3 [15]). Therefore, we implement a few strategies to help optimize this com-
putation. The basic constraint solving algorithm (before optimization) is shown
in Algorithm 3, where we conservatively return the result as satisfiable if the
constraint solver returns unknown. Note that this does not result in imprecision
during symbolic execution since the constraint is preserved. It ensures that we
do not eliminate paths that might be feasible but where the constraint solver is
unable to prove a definite result at that stage of symbolic execution.

Abstract Symbolic Execution. The first optimization we have implemented is
abstract symbolic execution, in which an abstract state is kept alongside the
typical symbolic state. In this abstract state, each variable can have one of eight
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Algorithm 3 IsSatorig(Cp,ct)
▷ Path constraint checking (simplest version)
▷ Calls an SMT solver (SMTSolve)

Input: Cp: prior path constraint; ct: new constraint to be added to the path constraint
Output: Satisfiability of Cp ∧ ct

1: if SMTSolve(Cp ∧ ct) = SAT ∨ SMTSolve(Cp ∧ ct) = UNKNOWN then
2: return SAT
3: else
4: return UNSAT
5: end if

values {⊥, -, 0, +, -0, -+, 0+, ⊤} indicating what is known about the variable’s
sign, which are arranged in a complete lattice with the partial order ⊂ such that
⊥ is the meet of all elements of the lattice and ⊤ is the join of all elements of
the lattice. We show the Hasse diagram for this lattice in Figure 3.

Fig. 3: Lattice for
the abstract domain
used in abstract
symbolic execution.

We chose this particular abstract domain due to the
ReLU activation functions: the ReLU choice is determined
by the sign of the input, and the ReLU determines the sign
of its output. These abstract values are updated alongside
the symbolic values held in the symbolic state; at any
given program point, the abstract value for each variable
will be an over-approximation of what is known about its
symbolic value.

Before checking any SMT formula for satisfiability, the
new clause ct is checked abstractly using its abstract coun-
terpart ct,a, and if ct,a is unsatisfiable, then the branch is
infeasible and there is no need to invoke Z3. If ct,a is a
tautology, (e.g., − < +), Cp∧ ct is satisfiable and ct is not
added to the path constraint. Only if ct,a is undetermined then Z3 is invoked on
the full constraint.

The method we use to construct symbolic expressions for internal nodes can
be augmented to construct these abstract values as well, as shown in Algo-
rithm 4. The three lines we add specifically for this abstract value computation
are marked with “Abstract”; without these lines, the function computes solely
the symbolic values necessary for symbolic execution. The abstract satisfiability
check is added as lines 1–2 and 13–14 in Algorithm 5.

Model Generation and Checking. In the symbolic execution tree, we define model
m to be a model that satisfies the path constraint of the node under consideration
and mprev as the model that satisfies the path constraint of its parent node.
When checking the satisfiability of a node’s path constraint, first we check if
mprev satisfies that constraint—if so, the constraint is satisfiable and m is set to
be mprev. If not, or if there is no mprev available, we evaluate using Z3 and if it is
satisfiable generate a new model m for this node. The parent model mprev must
satisfy one of the new clauses (together, the clauses cover the entire solution
space) which marks that clause as satisfiable. Note that checking if a model
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Algorithm 4 ConstructExpr(j, k)
▷ Computes Σn

i=0wi,j,khi,(k−1) + bj,k
▷ Uses helper function AbsVal to access and modify the abstract values associated with nodes
and concrete values, and AbsEval to compute an abstract mathematical operation on two abstract
values.

Input: j: index of node within layer; k: index of layer

1: expr ←Multiply(Expr(h0,k−1), w0,j,k)
2: AbsVal(expr) ←AbsEval(AbsVal(h0,k−1) × AbsVal(w0,j,k)) ▷ Abstract
3: for i in range(1,n) do
4: expr ←Add(expr, Multiply(Expr(hi,k−1), wi,j,k))
5: AbsVal(expr) ← AbsEval(AbsVal(expr) +
6: AbsEval(AbsVal(hi,k−1) × AbsVal(wi,j,k))) ▷ Abstract
7: end for
8: expr ← Add(expr, bj,k)
9: AbsVal(expr) ←AbsEval(AbsVal(expr) + AbsVal(bj,k))) ▷ Abstract
10: return (expr, AbsVal(expr))

Algorithm 5 IsSatfinal(Cp, ct, ct,a,mprev)
▷ Path constraint checking
▷ Calls an SMT solver (SMTSolve) and a model generation tool (GetModel)

Input: Cp: set of all path constraints from prior branches, ct: new path constraint to check, mprev:
model that satisfies Cp, ct,a: equivalent abstract constraint to ct (details of the construction of
ct,a are provided in the appendix).
Output: Satisfiability of Cp ∧ ct

1: if ct,a = Tautology then return SAT ▷ Next constraint Cp, passes model mprev
2: else if ct,a = Sat then
3: if mprev |= ct then return SAT ▷ Next constraint Cp ∧ ct, passes model mprev
4: else
5: if SMTSolve(Cp ∧ ct) = SAT then
6: m← GetModel(Cp ∧ ct)
7: return SAT ▷ Next constraint Cp ∧ ct, passes model m
8: else if SMTSolve(Cp ∧ ct) = UNKNOWN then
9: return SAT ▷ Next constraint Cp ∧ ct, no model
10: else return UNSAT
11: end if
12: end if
13: else return UNSAT
14: end if

satisfies a given constraint is faster to compute than checking satisfiability of a
constraint. This approach uses concrete values during symbolic execution similar
to concolic execution [30].

This model generation and check is added as lines 3 and 6 of Algorithm 5.

Overall Constraint Solving Algorithm. Algorithm 5 incorporates both abstract
symbolic execution and model generation as discussed above.

3.4 Model Counting Approaches

We use two model counting techniques in VerQ2: symbolic and constraint-loop
model counting.
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Symbolic Model Counting. Symbolic model counters ABC [4], Barvinok [34],
and LattE [7] compute the full model count for constraints without explicitly
enumerating all solutions. In VerQ2 we use the model counting constraint solver
ABC for part of the model counting. ABC is an automata-based model counter
which constructs a finite-state automaton characterizing the set of solutions to a
constraint. We also test LattE and Barvinok, both of which compute the model
count using Barvinok’s algorithm [11].

Constraint-Loop Model Counting. In this approach, a satisfiability solver is used
iteratively to find the solutions to a constraint formula F by first solving F (using
an SMT-solver such as Z3) to get the model m, then re-solving F ∧ ¬m (¬m
indicates that m cannot be a solution). This iteration continues until either no
more solutions exist or the solver returns UNKNOWN or times out. In general,
if |F | is the model count of F , then the solver is invoked |F | times. We name
this approach constraint-loop model counting. This approach still uses symbolic
constraint solving just like symbolic model counting, but it iteratively produces
one model at a time and must run in a loop to produce a count.

Model Counting Implementation. In our quantitative verification approach, there
are two places where model counting is needed. The first is before symbolic
execution, to obtain a model count of the input constraints (Cin) so that the
robustness can be calculated as a proportion of the total number of perturbed
inputs. The second is at the leaves of the symbolic execution tree, where path
constraints are conjoined with Cout: at each leaf, we count satisfying solutions
to Cp ∧ Cout.

For the first model count, the constraints are relatively small. For the second
model count, the constraints are generated by symbolic execution to represent
the behavior of the network, and can be large and complex, which impacts the
cost of model counting. However, the initial model count can be leveraged to
allow an inverse model count (|SAdversarialSet|) to compute robustness, which
for a fully or nearly fully robust network can yield small model counts from the
leaves. This property can aid the performance of constraint-loop model counting.
This constitutes counting solutions to Cp ∧ ¬Cout at each leaf.

4 Experimental Evaluation and Discussion

In our experimental evaluation we investigate the following research questions:

RQ1: Which of four integer model counting approaches is the best choice for
counting the constraints generated by neural networks?

RQ2: Do the optimizations we propose improve the symbolic verification time
for neural networks?

RQ3: Does quantitative symbolic robustness verification of neural networks pro-
duce results faster than brute force testing?

RQ4: Does the quantitative symbolic robustness verification approach we pro-
pose in this paper and implement in VerQ2 perform better than the existing
tool Provero [8]?
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Table 1: Quantitative robustness results for different inputs computed by VerQ2

for a network trained from the Parkinson’s dataset with 2 hidden layers, size 15.
|SPerturbRegion| |SAdversarialSet| Exact R Explanation

3,373,232,128 0 Yes 1 The network is fully robust for the region.
2,951,578,112 374 Yes 0.9999999 There are exactly 374 misclassifications in the

region.
3,855,122,432 10,179 No 0.9999974 There are at least 10,179 misclassifications in

the region.

We trained neural networks using Tensorflow [2] on three different datasets
described below, all obtained from the UCI Machine Learning Repository [16].
The networks are trained with full precision, and then converted to fixed-point.
All tests use values in I8,4.

Dataset Specifics: The Iris dataset [16] contains four real-valued input variables
(normalized to the [0,1] range), and three output classifications. We use this
smaller dataset for comparison to explain our choice of model counting strate-
gies, without the need to run slower model counters on large networks for com-
parison. The Parkinson’s dataset [16, 27] contains 22 real-valued input variables
(normalized to the [-1,1] range) and two output classifications. The Wisconsin
Breast Cancer dataset: abbrev. Cancer [16, 35] contains 30 real-valued input vari-
ables (normalized to the [-1,1] range) and two output classifications. Accuracies
of all of the tested networks are presented in our code repository.3

VerQ2 Output: Our tool has two ways in which it may produce a robustness
result—it will either report the robustness R as an exact result or as a sound
upper bound. To demonstrate the output produced by VerQ2, we present a few
examples in Table 1, all from the same network.

Comparison of Model Counters: We first compare 2 model counting approaches
for the initial count of the user’s input constraints: constraint-loop model count-
ing via Z3, and symbolic model counting via ABC. The results are shown in
Figure 4a. These tests use ten constraints of each size from the Iris constraint
set and only compare the time taken to complete the model count.

A radius of ∞ indicates that values are bounded by the range the inputs
were normalized to when training the network.

These results are intuitive—the constraint-loop approach with Z3 needs to
call Z3 once per model, so a larger count is slower. However, as ABC does not
use this loop approach, all of these constraints can be counted quickly. For all
future tests, we use ABC for the initial model count.

For the leaf counts, we also use the Iris networks and all constraints are of
the form of a two input feature attack, where both input features can be any
value within the normalized range. Results are shown in Figure 4b. The results
are an average of 10 tests with a 600s time bound each (ABC can exceed this
3 All of the data from the experiments in this paper is available at

https://github.com/mara-downing/ver-q2
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(a) Comparison of constraint-loop
and symbolic model counting for
input constraints of various sizes
for the Iris dataset.

Constraint Parameters Time (s)
# inputs perturbed radius Z3 ABC

4 0.1 2.92 0.01
4 0.2 80.38 0.01
1 ∞ 0.22 0.01
2 ∞ 2.80 0.01

(b) Comparison of constraint-loop and symbolic
model counting for the leaf counts of 2 input fea-
ture perturbations of the Iris networks.

Network Parameters Z3 ABC
# HL HL Size Accuracy # E Time (s) # E Time (s)

1 20 73.33 10 6.53 10 122.92
1 30 73.33 10 13.55 6 371.80
1 40 60.00 10 28.44 0 895.28
1 50 73.33 10 17.39 7 331.48
1 60 93.33 10 19.09 8 357.78
1 70 100.00 10 25.48 2 964.88
2 10 93.33 8 30.42 10 65.02
2 15 93.33 10 14.09 10 49.24
2 20 100.00 10 47.77 10 81.14
2 25 100.00 9 73.44 10 149.66
2 30 100.00 8 94.28 10 164.80
2 35 100.00 3 111.22 10 169.82
3 5 100.00 10 16.23 10 32.63
3 10 93.33 9 86.54 10 145.18
3 15 100.00 1 110.08 10 166.61
3 20 100.00 7 84.23 10 173.01

Average: 8.44 48.67 8.31 265.08

Fig. 4: Model counting performance comparison for input and leaf constraints.

since time is checked after each counting task is completed). The # E column
indicates how many are exact counts. Incomplete counts are a sound upper bound
on robustness measure R using Z3, as Z3 is counting misclassifications, and a
sound lower bound on R using ABC. Z3 is able to complete all of the tests faster
than ABC. Both tools report some incomplete counts. We additionally tested
the leaf counts using the Barvinok and LattE model counters, but both were
unable to solve simple leaf constraints in under an hour.

These experiments answer RQ1, identifying the best tool choice for both
places where model counting is required: ABC performs better than Z3 for the
initial count, and Z3 performs better than ABC for the leaf counts. All further
experiments use the model counters in this configuration.

Evaluating Effectiveness of Optimization Strategies: For this set of experiments,
we used the networks trained on the Iris dataset [16]. Each test uses 2 perturbed
input features, each allowed to take on any value in the normalized range. Re-
sults are shown in Fig. 5, where HL stands for Hidden Layer(s). The categories
are Base: Time with no optimizations, Abs: Time with abstract symbolic ex-
ecution only, MG : Time with model generation only, and All : Time with all
optimizations.

For all tests in Fig. 5, both abstract symbolic execution and model generation
show improvement over the base solving time. The combination of the two shows
an even larger improvement than either one alone. The effectiveness of these
optimizations increases with a higher # of internal nodes, which is expected as
more nodes means more branch points which can benefit from optimization.

We additionally tested these improvements on networks trained from the
Parkinson’s dataset. We allow 3 perturbed input features, which can take on any
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Fig. 5: Comparison of constraint solving optimization strategies on the Iris net-
works. Left shows times for all four levels of optimization, right shows speed up
(as in value times speed up) caused by both optimizations.

value in the normalized range. We remove any tests where both optimized and
unoptimized verification time out. These tests show an average 1.43x speedup.

Finally, we tested these improvements on networks trained on the Cancer
dataset. We allow 5 perturbed input features, which can take on any value in
the normalized range. Additionally, we allow one comparative perturbation—
one specific input value must be greater than another. We remove any tests
where both optimized and un-optimized verification time out. These tests show
an average 1.13x speedup.

These results answer RQ2, showing that our optimizations produce improve-
ments to symbolic verification time. Furthermore, our optimizations are more
effective with increasing network size.

Comparing VerQ2 with Random Sampling and Exhaustive Enumeration: In this
section, we show that our approach can perform better than random sampling
without replacement and exhaustive concrete enumeration.

For this section, exhaustive concrete enumeration refers to the approach
where all valid quantized inputs within the perturbation region are tested. Mean-
while, random sampling without replacement (once an element has been sampled,
it cannot be chosen again) functions very similarly, but is constrained by a time
bound rather than a sample number and the order in which samples are taken is
randomized. Exhaustive concrete enumeration can thus achieve an exact robust-
ness result by taking the time to check every input, whereas random sampling
without replacement can find a number of correctly classified and incorrectly
classified samples (incorrectly classified divided by |SPerturbRegion| forms a sound
upper bound on the robustness R).

We begin with a set of experiments comparing our approach to exhaustive
concrete enumeration. Our results are shown in Table 2. For this table, we take
160 tests (10 tests per network size, 16 networks) and divide them into three
categories by result, corresponding to the three rows of the table. The first two
rows indicate that VerQ2 obtained an exact robustness result for R and are split
by whether or not R = 1. The last row indicates that VerQ2 obtained a sound
upper bound on R.
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Table 2: Comparison of VerQ2 evaluation time with Exhaustive Concrete Enu-
meration for 16 Parkinson’s networks, 10 constraints each.

# Tests VerQ2 time (s) Exhaustive Enum time (s)

VerQ2 exact, R = 1 114 55.51 80,820.98
VerQ2 exact, R < 1 5 73.50 90,262.19
VerQ2 sound upper bound 41 1,087.67 91,522.52

Time reported for VerQ2 is an average of all tests in that category, whereas
time reported for exhaustive concrete enumeration is an extrapolation using the
average time per input multiplied by the total number of inputs in the pertur-
bation region. We used the same 16 network sizes used in Figure 4b, trained on
the Parkinson’s dataset [16, 27], 10 perturbation regions per network, and a 30
minute timeout. Each constraint allows 11 input features to be perturbed with
a radius of 0.2.

In Table 2 we see that in cases where VerQ2 can obtain an exact result, it is
3 orders of magnitude faster than exhaustive concrete enumeration. To further
analyze the 41 cases for which VerQ2 produces a sound upper bound, we con-
struct an additional experiment in which random sampling without replacement
is given the exact amount of time as VerQ2 took for each given test to produce
as many misclassifications as possible (if VerQ2 found an exact result for a test
in 2000ms, random sampling without replacement is given 2000ms for that test).

This random sampling strategy iteratively chooses inputs from SPerturbRegion

at random, runs them in the network, and records whether or not they are
classified as expected until the specified time limit. Results are shown in Fig. 6.

With these results, we answer RQ3 affirmatively. Moreover, VerQ2 performs
better than random sampling even excluding cases where the tested region is
fully robust (where VerQ2 obviously outperforms random sampling).

Comparing VerQ2 with Provero: We compare VerQ2 with the sampling based
tool Provero [8]. Given a threshold θ of proportion of adversarial (misclassi-
fied) inputs within a perturbation region, Provero can report with a degree of
confidence measured by parameters η and δ whether or not the proportion of
adversarial inputs is above or below a threshold θ. η is an additive precision on
the threshold θ and δ is the level of probabilistic certainty necessary to consider
a threshold proved or disproved. Provero is not specifically designed for our

Fig. 6: Comparison with random sampling approach. VerQ2 shows improvement
in the green sections. Left: All tests; Right: All nonrobust (R < 1) tests.
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Table 3: Comparison of VerQ2 with Provero, using parameters η = 0.001
and δ = 0.01 for Provero as well as a binary search loop to find the closest
probabilistically provable thresholds.

# Tests VerQ2 Provero (η = 0.001, δ = 0.01)
time (s) time (s) Avg. Rob. Range Avg. Upper Bound Diff.

VerQ2 exact, R = 1 114 55.51 1,800.00 0.00195 NA
VerQ2 exact R < 1 5 73.50 1,800.00 0.00195 NA
VerQ2 sound upper bound 41 1,087.67 1,715.24 NA 0.056

purpose, but it is an existing and effective robustness tool which does not rely on
properties of floating point or binary neural networks and thus can be adapted
as a baseline comparison.

For this comparison, we re-implement the Provero algorithm since the orig-
inal tool does not support inequality-based perturbation region constraints and
fixed-point input feature values. Additionally, since Provero requests an ex-
pected robustness threshold to be given by the user (θ), and our approach pro-
duces this threshold automatically, we set up a binary search loop where θ starts
at 0.5 and then is modified as thresholds are proven or disproven.

We report our results for comparison with Provero in Table 3 and divide the
rows of this table in the same way as Table 2. We report our results for the first
two rows with the time taken by Provero and the distance between the upper
and lower R discovered using the binary search. For example, if Provero can
probabilistically prove that the robustness measure R is bounded by 0.751 ≤ R <
0.764, we report 0.013 difference between the upper and lower bound (robustness
range in Table 3, averaged across all 114 or 5 cases in the row).

In Table 3, we also show the 41 cases for which VerQ2 reports a sound
upper bound, and display here the average difference obtained by subtracting
Provero’s upper bound on R from our upper bound on R. For example, if
Provero can probabilistically prove that the robustness measure R is bounded
by 0.751 ≤ R < 0.764 and VerQ2 reports a sound upper bound on the robustness
at 0.771, we report 0.771−0.764 = 0.017 as the upper bound difference in Table 3
(averaged across all 41 cases in the row).

We use δ as 0.01, the level used in [8]. We test η as 0.001, the most precise
value used in [8]. For all tests, we give a 30 minute timeout to match the timeout
for VerQ2 on these networks, and we report the results at timeout (or stop early
if the robustness range becomes ≤ η).

From Table 3 we can see that our approach outperforms Provero both by
time and by precision for cases where we get an exact result—in all of these
cases, we are able to produce a sound and exact result, whereas Provero is
only able to bound the result and is producing probabilistic guarantees rather
than fully sound guarantees on these bounds. For the cases where we get an
upper bound, we show that our approach is faster than Provero as well, and
additionally that, while it is expected Provero’s approach will produce a more
precise upper bound by being able to sample and prove probabilistic results
instead of counting individual models, ours is not much higher on average.
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With these results, we answer RQ4 and show that our approach performs
better than Provero on cases where we can produce an exact result and com-
parable on cases where we produce a sound upper bound.

5 Discussion

Within our experiments, we evaluate different model counting approaches and
find the most effective for quantized networks (RQ1) and we show how our
constraint solving optimizations improve our quantitative verification (RQ2).
We additionally demonstrate how our technique can perform better than two
forms of brute force testing (RQ3) and an existing published tool [8] (RQ4).

It is known that worst case complexities of many symbolic verification tech-
niques are exponential. However, worst case exponential complexity has not ex-
cluded verification techniques from transition to practice. For our approach, we
have a worst-case complexity of O(3|N |) calls to a constraint solver, where |N |
is the number of nodes in N minus the input nodes. However, despite this high
worst-case complexity, within existing networks and local perturbation regions
the actual calls to the constraint solver are far fewer.

6 Conclusion

We present a symbolic execution and model counting based approach for quan-
titative verification of quantized neural networks, and its implementation in
VerQ2. Given a user-defined robustness property for a network, we compute the
proportion of inputs in the perturbation region that do not change the output
of the network, which provides a quantitative measure of robustness. We present
translations from fixed-point constraints to equivalent integer constraints so that
we can use integer model counting to produce quantitative results. We have com-
pared the performance of different model counting approaches on the quantized
network constraints, and also our own improvements to constraint solving within
symbolic execution. Additionally, we have compared our approach against two
brute-force sampling approaches and an existing tool for quantitative floating
point neural network verification modified for quantized values and found our
approach performs favorably against all three. To the best of our knowledge,
VerQ2 is the first quantitative verifier for quantized networks with more than
binary precision.
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