Java — why so popular (so quickly)

e Code looks like C (and C++) — familiar
for many existing programmers

— Object-oriented without complexities of C++

o Killer API (application programmers interface)
— Built-in networking features (

— Graphical user interface (GUI) objects

— Threads, media support, ... ‘,__,,)
s
o |s free! o

e Java virtual machine — JVM -

“Write once, run anywhere.”]ava

A simple Java program

e Java “programs” — actually classes (types
of objects)
e A first java application: class Hello
1. Create file called Hello. java

2. Compile - javac Hello.java
(creates bytecode file named Hello.class if
successful)

3. Execute — java Hello
(invokes JVM)

What is a Java application?

e Answer: A class with a main method

€.g., public static void main(String[] args){ }
e Huh?

public — can be invoked from another package

static — same for all instances of this class

void — does not return anything

main —the method’s name

(String[] args) — parameter list (an array of Strings)

{ } - block delimiters {method definition is inside}

Special characters & comments

e Escape sequences — all start with \
- e.g., \n-newline, and \t - tab
— Also \” — double quotes, and \” - single quote
—\\ - back slash itself, and more (see text p. 23)
— Play with Hello.java - to see effects
e 3 types of comments:
// for single line or end-of-line comment
/* for comment that may
span lines */

/** Javadoc comment (upcoming topic) */

Java has 8 primitive data types

e 7 are “number” types
— 5 of the number types are integral types:
e int - most fundamental; 4, -123, 9587123 are int
e long - for longer integers (>2,147,483,647)
e short, byte - save space for shorter integers
e char —to represent characters; ‘A’, "a’, ‘\n’
— Other 2 number types are floating point types:
o double - most fundamental; 0.4, -123.3, 95.
o Float - save space for less precision
e 8 type is boolean: to represent true or false

e Every other data type in Java is an object type

Objects

e An object is a thing or a concept

— Often a model of a real-world thing or concept
e Probably contains both data and methods —i.e.,

a software object can know stuff, and do stuff

e Easy to create and use (e.g., MoveTester.java):

1. Declare reference — Rectangle box;

2. Create the object, and assign it to the reference —

box = new Rectangle(5, 10, 20, 30);
3. Invoke its methods — box. translate(15, 25);

Objects vs. object references

A reference can “point” to nothing (null).
cerealBox []
-7?

It must point to an actual object to be useful.
—1

Rectangle

x 2]
y]
width
height

Classes

e Technically, an object is an instance of a class
e Classes define an object’s interface

— These are the public methods and data that other types of
objects can access directly

— e.g., Rectangle’s translate() method
o Class definitions also contain the implementation
— The private members and internal details of methods
- e.g., X, y coordinates of Rectangle should be private data

- e.g., how the translate method actually works to change
these coordinates is unimportant to clients of the class

Bank account example

e Software design effort identified the need for
objects that represent bank accounts
o Why objects, not just numbers?

— Because bank accounts are more complex
o Need a way to store a balance — data

e But also need ways to deposit and withdraw money, and
report the current balance — methods

e |dea is that other software objects will:
— Create new BankAccount objects
— Use the objects’ methods to solve problems
e But first, must write class BankAccount

Class definition I:
define the interface

public class BankAccount {
public void deposit(double amount) {}
public void withdraw(double amount) {}
public double getBalance() {}

}

e This is all that programmers of other classes have
to know: the public interface

— They can start working independently — how methods
are implemented doesn’t matter

e Also the time to document the interface — add
javadoc comments

— More about javadoc comments later in course

Class definition Il:
define the data

e i.e., what objects of this class will “know”
e Variables declared outside any method
— Includes instance variables
o Can store different values for each instance (see text fig. 4, p. 39)
— May also include static (ak.a. “class”) variables
e Tip: make instance variables private
- e.g., private double balance;

— Other classes can’t directly access or alter
e e.g., harrysChecking.balance = -1000; //error

Class definition Il1:
implement the methods

e Often manipulate the data in some way
public void deposit(double amount) {
balance = balance + amount;

public void withdraw(double amount) {
balance = balance - amount;

e Other times provide a copX of the data
public double getBalance() {
return balance;

Defining constructors

e A default constructor is always defined
— e.g., new BankAccount(); // no parameters
— Initializes instance variables to default values:
e Primitive number type values are set to 0
o boolean values are set to false
) ObjeCl references are set to null

e Often want to “overload” the constructor

— €.0., public BankAccount(double initialBalance)
{ balance = initialBalance; }

— Name is same as classname, and there is no return type
® See BankAccount. java and BankAccountTester. java

