
1

Java – why so popular (so quickly)

Code looks like C (and C++) – familiar
for many existing programmers
– Object-oriented without complexities of C++

Killer API (application programmers interface)
– Built-in networking features
– Graphical user interface (GUI) objects
– Threads, media support, …

Is free!
Java virtual machine – JVM –
“Write once, run anywhere.”

A simple Java program

Java “programs” – actually classes (types
of objects)
A first java application: class Hello

1. Create file called Hello.java
2. Compile – javac Hello.java

(creates bytecode file named Hello.class if
successful)

3. Execute – java Hello
(invokes JVM)

What is a Java application?
Answer: A class with a main method
e.g., public static void main(String[] args){ }

Huh?
public – can be invoked from another package
static – same for all instances of this class
void – does not return anything
main – the method’s name
(String[] args) – parameter list (an array of Strings)
{ } – block delimiters {method definition is inside}

Special characters & comments
Escape sequences – all start with \
– e.g., \n – newline, and \t – tab
– Also \” – double quotes, and \’ – single quote
– \\ – back slash itself, and more (see text p. 23)
– Play with Hello.java – to see effects

3 types of comments:
// for single line or end-of-line comment

/* for comment that may
span lines */

/** Javadoc comment (upcoming topic) */

Java has 8 primitive data types
7 are “number” types
– 5 of the number types are integral types:

int – most fundamental; 4, -123, 9587123 are int
long – for longer integers (>2,147,483,647)
short, byte – save space for shorter integers
char – to represent characters; ‘A’, ’a’, ‘\n’

– Other 2 number types are floating point types:
double – most fundamental; 0.4, -123.3, 95.
float – save space for less precision

8th type is boolean: to represent true or false
Every other data type in Java is an object type

Objects

An object is a thing or a concept
– Often a model of a real-world thing or concept
Probably contains both data and methods – i.e.,
a software object can know stuff, and do stuff
Easy to create and use (e.g., MoveTester.java):

1. Declare reference – Rectangle box;

2. Create the object, and assign it to the reference –
box = new Rectangle(5, 10, 20, 30);

3. Invoke its methods – box.translate(15, 25);

2

Objects vs. object references
A reference can “point” to nothing (null).

It must point to an actual object to be useful.

Classes
Technically, an object is an instance of a class
Classes define an object’s interface
– These are the public methods and data that other types of

objects can access directly
– e.g., Rectangle’s translate() method

Class definitions also contain the implementation
– The private members and internal details of methods
– e.g., x, y coordinates of Rectangle should be private data
– e.g., how the translate method actually works to change

these coordinates is unimportant to clients of the class

Bank account example
Software design effort identified the need for
objects that represent bank accounts
Why objects, not just numbers?
– Because bank accounts are more complex

Need a way to store a balance – data
But also need ways to deposit and withdraw money, and
report the current balance – methods

Idea is that other software objects will:
– Create new BankAccount objects
– Use the objects’ methods to solve problems

But first, must write class BankAccount

Class definition I:
define the interface

public class BankAccount {
public void deposit(double amount) {}
public void withdraw(double amount) {}
public double getBalance() {}

}

This is all that programmers of other classes have
to know: the public interface
– They can start working independently – how methods

are implemented doesn’t matter
Also the time to document the interface – add
javadoc comments
– More about javadoc comments later in course

Class definition II:
define the data

i.e., what objects of this class will “know”
Variables declared outside any method
– Includes instance variables

Can store different values for each instance (see text fig. 4, p. 39)

– May also include static (a.k.a. “class”) variables
Tip: make instance variables private
– e.g., private double balance;

– Other classes can’t directly access or alter
e.g., harrysChecking.balance = -1000; // error

Class definition III:
implement the methods

Often manipulate the data in some way
public void deposit(double amount) {

balance = balance + amount;
}
public void withdraw(double amount) {

balance = balance - amount;
}

Other times provide a copy of the data
public double getBalance() {

return balance;
}

3

Defining constructors
A default constructor is always defined
– e.g., new BankAccount(); // no parameters
– Initializes instance variables to default values:

Primitive number type values are set to 0
boolean values are set to false
Object references are set to null

Often want to “overload” the constructor
– e.g., public BankAccount(double initialBalance)

{ balance = initialBalance; }

– Name is same as classname, and there is no return type
See BankAccount.java and BankAccountTester.java

