
1

Variables and memory

Every variable has:
– a name, a type, a size, and a value

Concept: name corresponds to a memory location
If primitive type – actual value stored there: long
needs more space than int, and so on
If object type – just reference to object stored
there (just need space for memory address)
– Actual object is somewhere else
– But reference can be null – means no actual object

Variables and constants
Java is “strongly-typed”
– Must declare type for memory locations used
– e.g., declare 2 doubles, and one String reference

double a, b;
String s;

Declaring allocates space, but value is undefined
– Must assign value, or compiler won’t let you use it
final variables are “constants”
– May only assign value once; usually when declared

e.g., final double TAX_RATE = 0.0775;

Identifiers
Names of classes, variables, methods
3 simple rules:
– Must consist of a sequence of letters, digits, _, or $

No other characters allowed – including no spaces
– Must not begin with a digit
– No Java reserved words allowed

Unwritten rule: Use meaningful names
Conventions:
– NameOfClass – begin with uppercase
– other or otherName, unless name of constant, like PI

Standard Output, and Strings

System.out – an object of type PrintStream
– println(string) – prints string and newline
– print(string) – prints string, no newline

String – delimited by quotes: “a string”
– Remember: special characters start with “\”

e.g., \n is a newline character
So println(“Hi”) is same as print(“Hi\n”)

+ concatenates: e.g., “a” + 5 + ”b” becomes “a5b”
Note: first 5 is converted to a String.

Formatted printing with printf
Java 5: printf(String format, Object... args)
– Method of PrintStream class – so System.out has
System.out.printf(“x = %d”, x); // x is an integer

%d means print integer as decimal. Can be octal or hex too:
…printf(“octal: %o%nhex: %x%n”, x, x);

Note variable length argument list – also new Java 5 feature
%f or %e or %g for floating point, and %s for strings
– Also control field width, precision, and other formatting
…printf(“%-9s%7.2f%n”, “Value”, v);

– See Tables 3 and 4, p. 168
Complete details in java.util.Formatter
– Format dates, times, … Works for String objects too:
String s = String.format(“pt: %d, %d", x, y);

java.lang.Math static methods

Math’s public methods are all static
– So invoke by class name and the dot “.” operator:

double r = Math.toRadians(57.);
System.out.println(“Sine of 57 degrees is “ +

Math.sin(r));

Some methods in chapter 4, Table 2 (p. 150):
– Math.max(x,y) and Math.min(x,y)

– Math.random() (and more versatile java.util.Random class)
e.g., int dice = (int)(Math.random()*6) + 1;

Math is in the package called java.lang (the
one you needn’t import)

2

Some String methods

Accessing sub-strings: (Note – positions start at 0, not 1)

– substring(int) – returns end of string
– substring(int, int) – returns string from first

position to just before last position
– charAt(int) – returns single char
length() – the number of characters
toUpperCase(), toLowerCase(), trim(), …

valueOf(…) – converts any type to a String
– But converting from a String is more difficult

Standard input, and more Strings

Normally have to read keyboard or other input as
a String (also requires error handling and a reader object)

And must “parse” string to interpret numbers or
other types
e.g., String s1 = “426”, s2 = “93.7”;
Then s1 can be parsed to find an int or a double,
and s2 can be parsed to find a double:

int n = Integer.parseInt(s1);
double d = Double.parseDouble(s2);

java.util.Scanner

Important Java 5 enhancement
– Greatly simplifies processing standard input
– No need to handle IOExceptions
– No need to deal with parsing input strings

First construct a Scanner object – pass it System.in
Scanner in = new Scanner(System.in);

Then get next string, int or double (others too)
int x = in.nextInt();
double y = in.nextDouble();
String s = in.next();
String wholeLine = in.nextLine();

Other ways to get data from user
JOptionPane – simplest type of GUI
– Quick way to get an input String from the user
– Must parse string to convert to numbers/other
– e.g., old text’s InputTest.java

Before Java 5 – harder to read standard input
– Basically, associate a Reader object with System.in
– Must handle or throw IOExceptions
– Data actually are integers representing char

Reader object converts whole line to a String – then parse
– e.g., old text’s ConsoleInputTest.java

Some operators
= is the assignment operator
Basic arithmetic operators: +, -, *, /, %
– % is modulus operator (remainder)

Compound arithmetic/assignment operators
e.g., a += 5; // same as: a = a + 5;
– Also -=, *=, /=, and %=

Increment and decrement operators
– ++ is same as += 1 and -- is same as -= 1
– e.g. counter++; // increments counter by 1

Pre vs. post ++ or --
Post-increment is not exactly the same as pre-
increment (same goes for decrement)

– i.e., x++ is not exactly the same as ++x, but the final
value of x is the same in both cases

Post uses value then changes it; pre is reverse
e.g., say x = 7, then
System.out.println(x++) // would print 7
System.out.println(++x) // would print 8

– In either case, x equals 8 after the print.

