
1

Type conversions
Automatically applies to promotions only
– e.g., int n = 5; double d = n; // okay

n is “promoted” to double before assignment happens
– e.g., int n = 5; double d = n/2.0; // okay

n promoted to double before division; result is double

Must “cast” to force other conversions
– e.g., double d = 5.; int n = d; // error

double d = 5.; int n = (int)d; // okay
– But not all casts are legal (basically must make sense):

String s = “dog”; int n = (int)s; // error

Some object reference issues
null – a reference to no object at all
– Cannot send message to “no object”, of course

e.g., BankAccount mySavings = null;
mySavings.withdraw(100); // error at runtime

this – an object’s reference to itself
– Often used just for clarity:

e.g., in a BankAccount method, balance = 0 is same as
this.balance = 0

– Also used to call one constructor from another one
e.g., public BankAccount() { this(0); }

Copying a reference does not copy the object.

Copying values …

Copying values (of primitive data types) actually
does copy the value:

int balance1 = 1000;
int balance2 = balance1;

// now there are separate copies of the value 1000

… vs. copying references
Copying references to objects does just that:

BankAccount account1 = new BankAccount(1000);
BankAccount account2 = account1;

// now there are separate copies of the reference
// but there is still just one bank account object

Java has 7 control structures

1st is trivial: sequence structure
3 choices of selection structures (decisions):
– if
– if/else
– switch

3 choices of iteration structures (loops):
– while

– for (Two versions of it, since Java 5)
– do/while

if

Either
if (boolean expression)

one statement;
Or

if (boolean expression) {
multiple statements;
separated by ;

}
boolean expressions: evaluate to true or false

Note indentation

Indented here too

2

Simple boolean expressions

Relational operators: <, >, <=, >=, ==, !=
– e.g., int x=1, y=2, z=3;

x > y // false
x >= z - y // true

Note lower precedence than arithmetic
x == z + y // false

Note not same as x = z + y // makes x be 5
z != x + y // false (if x still is 1)

Boolean operators: &&, ||, !

For combining simple boolean expressions into
more complex expressions
– Operands are boolean expressions
– e.g., grade == ‘A’ && weight > 10

Note: relational operators have higher precedence

Truth tables: see text page 207
– op1 && op2 - true if both operands are true
– op1 || op2 - true if either operand is true
– !op - true if operand is false

Note: && has greater precedence than ||

if/else

1. Can implement with if and else:
if (grade >= 60)

message = “Pass”;
else

message = “Fail”;

2. Or with selection operator:
message = grade >= 60 ? “Pass” : “Fail”;

// same result as if/else above
– This version does not allow {blocks} or nesting; but

it returns a value, so more useful in many cases

switch

switch (controlling integral expression) {
case constant integral expression:

statements;
break; // important

case constant integral expression:
statements;
break;

...
default:

statements to do if no case matches;
}

while
while (boolean expression)

operation; // or a block, delimited by { }
Apply to loops for which termination uncertain
– e.g., processing the “tokens” in a string
– e.g., reading unlimited lines of input data
– e.g., waitForBalance in Investment.java (p. 230)

Awkward but usable for counter-controlled loops
int counter = 0;
while (counter < 10) {

...
++counter;

}

// initialize
// compare to limit

// increment (or otherwise change)

for

More natural for counter-controlled loops:

for (int c = 0; c < 10; c++) ... // or {…}

– e.g., waitYears in upgraded Investment.java (p. 239)
Notes:
– Header requires three fields (i.e., always two “;”)
– Watch scope of control variable
– Alternate version for collections (upcoming)

initialize
compare

increment

3

do/while

do {
... // loop body

} while (boolean expression);

Notes:
– Always executes at least once

e.g., good for user input checking
– Don’t forget the semicolon at the end

Arrays

Definition: a fixed number of consecutive
memory locations, all of the same type.
– Either primitive data values of the same type
– Or references to any one class of objects

Can refer to all as a group by array’s name
Can refer to any one by name[position]
– Position is called array “subscript” or “index”
– First position is 0 (others are “offset” from 0)

Also – in Java – an object in its own right

Arrays as objects
A public final instance variable: length
– Length is fixed after created (instantiated)
– Range of positions: 0 ... length-1

Declare, instantiate – separate steps:
int x[]; // declare array of int named x

int[] x; // same thing (clear that x is an int array)
x = new int[4]; // instantiate array of length 4

// all elements initialized to default values (0 in this case)
– Or shortcut will instantiate and initialize elements
int x[] = { 3, 7, 4, 5 };

Accessing array elements

Say int x[] = { 3, 7, 4, 5 };

– What is:
x[0] ?

x[1]-x[0] ?

x[x[0]] ?

x[4] ?

3

4

5

throws ArrayIndexOutOfBoundsException

Handling arrays

for loops are especially useful:
for (int i=0; i < x.length; i++)

{ /* use x[i] in the loop body */ }

Copy of reference is just an alias to same array
int[] a = x; // if x is an int array already

Actual copy is a new object with copies of values
int[] a = new int[x.length]; // same length as x
for (int i=0; i < x.length; i++)

a[i] = x[i];

Enhanced for loop (since Java 5)

Actually a “for each” loop
for (int element : array)

– Reads “for each element in array”
e.g., array of strings: String words[] = …
for (String s : words)

System.out.println(s);

Note the loop control variable is the array
element itself, not its array index
– So not applicable if index value is required

Aside: enum demo

4

Basic array techniques
Summing array elements:
int sum = 0;
for (int item : x)

sum += item;

Finding a maximum (or other extreme):
int max = x[0]; // initialize to first value
for (int i=1; i < x.length; i++)

if (x[i] > max) max = x[i];

Printing on one row of standard output:
for (int item : x) System.out.print(“ “ + item);
System.out.println(); // newline after row is done
– Q: How to print in reverse order?

