
1

Handling array size limitations
Issue: array size is fixed after construction
– Don’t always know what size to allocate at start

Solutions (besides class ArrayList – coming soon)
– Allocate “way more than enough”

Absolutely limits the size of the problem – not a good idea
– Create new, larger array, and copy values

if (dataSize >= data.length) {
int[] newData = new int[2 * data.length];

... // here: deep copy up to (data.length – 1)

data = newData; // copy reference (discard old array)
}

Arrays of object references

Arrays of objects require 3 steps to use:
Rectangle[] boxes; // 1. declare array of references
boxes = new Rectangle[3]; // 2. instantiate array
for (int i=0; i<boxes.length; i++)

// 3. instantiate each object in the array:
boxes[i] = new Rectangle(5+i, 5+i, 5, 5);

Two ways to copy (like any object that has
references to other objects):
– Shallow copy – just copies array references
– Deep copy – makes new copies of all objects

Arrays of arrays

e.g., int a[][] = new int[10][4];
– Like a “table” with 10 rows and 4 columns
– a.length is 10
– Each a[i].length is 4, for all i
– Component array sizes can vary

a[2] = new int[6]; // now 3rd row has 6

Typically use nested for loops to process
– See TicTacToe.java (p. 307)

java.util.ArrayList
ArrayList<T> a = new ArrayList<T>();

– T is an object type – may not be primitive
A generic class (since Java 5) – so “type safe”
Use methods to add, insert, remove, set, get …
– Cannot use = or [] notation like arrays

Use “wrapper” classes for primitive data types
– Btye, Short, Integer, Long, Float, Double,
Character, Boolean

– Autoboxing and auto-unboxing simplifies it though
ArrayList<Double> list = new ArrayList<Double>();
list.add(0.74); // actually adds new Double(17.64)
double d = list.get(0);

// actually executes list.get(0).doubleValue();

How to use ArrayLists
Declare/create ArrayList (no need to size it):
ArrayList a = new ArrayList();
– Or – with Java 5 – can specify the type

ArrayList<T> a = new ArrayList<T>();
// where T is an object type – not a primitive data type

Add objects to end, or set and get specific objects
ArrayList<Rectangle> a = new ArrayList<Rectangle>();

a.add(new Rectangle(5,5,5,5));

Rectangle r = a.get(0); // gets first
a.set(0, new Rectangle(0,0,10,10)); // replaces first

Simple insert and remove too
a.insert(i, new Rectangle(1,1,1,1)); // inserts in position i
a.remove(i); // removes element in position i

Sample Quiz
1. (10 points) Let x[] be an array of double that is

already initialized. Create an ArrayList<Double>
object, and copy each x value to this list in reverse
order (add the last element first, …, and the first element last) .

2. (10 points) Let y[][] be an array of double arrays
that is already initialized. Translate the following
nested enhanced for loops to nested while loops:

for (double[] row : y)
for (double value : row)

System.out.println(value);

2

1st Quiz – 20 homework points
1. (8 points) Let x[] be a double array that is already

initialized. Translate the following enhanced for loop
to a while loop:

for (double d : x)

System.out.println(d);

2. (12 points) Let y[][] be an array of double arrays
that is already initialized. Declare and create an
ArrayList<Double> named list, and add copies of
every value in y[][] to list (the order does not matter).

More java.util collections
List – actually an interface
– Defines a set of common methods like add, size, iterator

Shared by ArrayList, LinkedList, and others
– Note: Collections methods to manipulate List objects:
Collections.shuffle(list); // randomly shuffles the list
Collections.sort(list); // assuming items are Comparable
Stack – a last-in first-out (LIFO) data structure
Stack<String> s = new Stack<String>();
s.push(“dog”); ... // push objects onto top of stack
while (!s.isEmpty())

... s.pop(); // removes/returns top object
Also trees, sets, hash tables, … – more about this in CS 20

Using methods – “invoking”

Can look like a direct translation of an algorithm
getData();
process();

showResults();

Then process() might use another method
result = calculate(x, y);

where calculate returns a value based on x and y.
And so on …
– Translates top-down program design to method calls

Invoking methods (in formal terms)

methodName(list of arguments);
– Transfers control to the method named; may “pass”

data via the list of arguments
– After the method completes (or aborts) its work,

control returns to the calling statement
– Some methods also return some results

Actual syntax: objectReference.name(…)
– Or ClassName.name() if method is declared static
– In same class, this. is implied

