
1

Defining methods
Method header:
type name (parameter declarations)
– type – refers to the result of the method

May be any primitive type, any class, or void
– If not void, statements in the method body must

include a return statement
Method body:
{
other declarations; 
statements;
return …;

}

Some notes about return

Can return if void method too – early exit
One method can have multiple returns
– Just the first one encountered is executed, so 

usually used within selection structures
– Compiler checks that every branch has one

Actually returns a copy of a local variable
int result = …;

return result; // caller gets a copy of result

Scope/duration of variables

Depends on where declared
– i.e., in which set of {}; in which “block”

Declared in class block (instance/class variables):
– Duration (“lifetime”): same as duration of object
– Scope: available throughout the class

Declared in method or other block (including 
formal parameters):
– Duration: as long as block is being executed
– Scope: available just within the block

Arguments vs. parameters
In Java, arguments are always passed as copies
e.g., imagine 3 mystery methods f1, f2 and f3, and 
these data:
int x = 5, y[] = {3, 92, 17};
Rectangle r = new Rectangle(5,5,5,5);

– Some things are certainly true about f1, f2 and f3. For example:
f1(x); // int value f1 cannot change x (parameter is a copy)
f1(y[0]); // also an int value f1 cannot change y[0]
f2(r); // a reference f2 cannot aim r at a different Rectangle

// but can change the Rectangle object that r references
f3(y); // an array reference f3 cannot aim y at another array

// but can change the elements of the array that y references

About static

Meaning in Java: “same for all objects of a class”
– So static methods are “class methods” and static

variables are “class variables”
static methods do not operate on an object
– So cannot access instance variables
– Only have explicit parameters (no this)
static data common to all objects of a class
– e.g., if (Martian.count > 10) attack();
– Can be accessed by static methods
– Careful though: often misused like “global” variables

Overloading methods

Method signature: name (parameter list)
– Overloading means reusing the name with a different 

parameter list
i.e., different number, types, and/or order of parameters

– Cannot distinguish by different return type alone
e.g., three utility print methods
void pr() { System.out.print(“standard”); }
void pr(String s) { System.out.print(s); }

void pr(int x) {System.out.print(“Num: “+x);}



2

Wednesday, 10/29
Midterm exam

Pre- and post-conditions

Pre-conditions – what must be true to use method
– Usually are restrictions on the values of parameters

e.g., x must not equal zero in divideBy(int x)

– Should throw exception if violated (more on this later)

Post-conditions – what is true after method used
– Here checking on accuracy of method’s algorithm

Together they constitute a type of contract
– Both should be clearly stated in method comments

Combining methods – classes
Good designs split responsibilities meaningfully
– “Good” = adaptable, extendable, not error-prone, …
– Not just splitting work between methods

Also means splitting methods between classes

Start by choosing appropriate classes – not easy!
Then assign responsibilities to classes
– According to good design principles

e.g., high cohesion – all members of a class are related
e.g., low coupling – few interactions between classes

Note: this is just an intro – much more in CS 50

Access/mutation of private data

Information knowing is a type of responsibility
– Translates to instance and class variables

Should be private – according to information hiding principle

So usually provide accessor methods – getX()

And maybe mutator methods – setX(val)

– Unless want immutable objects – String, Double, …
Note: best to avoid “side effects”
– i.e., unexpected changes to parameters or 3rd classes
– At least be sure to advertise as post-conditions

Combining classes – packages
Uppermost level of Java modules
– Used to bundle related classes – a good design
– Also a mechanism for “namespaces”

Declare in each class – package my.stuff;
Store all in same directory – ./my/stuff/
Must qualify class names to use them
– Either explicitly each time name is used –
my.stuff.Thing

– Or import my.stuff.Thing;
– Or import my.stuff.*; //get all classes in package

See text section 8.9 and “How To” 8.1 


