
1

Software “lifecycle” (simplified)

1. Problem statement requirements analysis
2. Domain analysis
3. System Design
4. Programming (implementing the design)

– Includes fixing syntax and runtime errors
5. Testing and debugging (not the same thing!)

– Typically iterate – repeat steps 1 to 5 as necessary
6. Maintenance (could be longest, costliest stage)

Testing

Means looking for bugs
– Dijkstra: “testing verifies the presence of

errors, not their absence”
i.e., cannot test all possible situations to insure that
no bugs remain – but job is to try

2 general categories:
– “Black box testing” – best if by independent

tester: he/she doesn’t know internal structure
– “White box testing” – can be more thorough

Unit testing

First step of “white box testing”
– Test each unit separately, before mixing them

Each method of each class, each class in each
package, each package in each system …
Includes testing the main method as a unit

– Test methods by “driver programs”
– Use “stubs” for incomplete methods

Next step is integration testing
– But with confidence that each unit is correct!

Test cases

Goal: test all possible situations
– Usually not realistic (unless program is very simple)

So settle for good test cases
– Fully test normal functionality – routine cases

Be sure to test all branches, even rare ones

– Include boundary cases (e.g., 0, maximums, …)
– And remember to test some invalid cases (e.g., not

number, negative, …)
Good programs should handle gracefully – i.e., don’t “crash”

Testing notes
Coverage testing – an ideal that makes sense: test
each line of code with at least one test case
Regression testing – a reality: must re-run all
tests after every program change
– Otherwise, likely that bugs are reinserted
– Need automated tests (e.g., files) to do cheaply

Other testing: hardware, on-site installation, …
Tragic truth: testing takes time!
– But can save time by catching bugs early

Implementing tests

Some tests can be automatically generated
– Either systematic intervals, or random inputs

Much better to use data files – can repeat many
tests without much effort
Sometimes can automatically verify test outputs
– Maybe find a natural calculation
– Or maybe find an “oracle” to use

Or use a testing framework like JUnit

2

Programming with assertions

Some testing can be built right in
– Easy to test assertions – statements that must be true

Java syntax (since SDK 1.4): assert boolean-expression;
– If boolean expression is true – assert does nothing
– But if false – prints a stack trace and exits

e.g., pre-condition for division – divisor is not 0
assert divisor != 0;

return x / divisor; // know it’s safe now
Also good for post-conditions, invariants, …

Inheritance
Can create new classes by extending others
– New class is called subclass or “child”
– Extended class is called superclass or “parent”
– Subclass inherits all of superclass’s members

And usually has added, or altered features
But cannot directly access private members

Results in “is a” relationship
– Say class Basketball extends Ball

Then any instance of a Basketball is a Ball
Reverse is not always true: a Ball can be a Football, or …

Inheritance example from text
class SavingsAccount extends BankAccount

– Inherits withdraw, deposit, getBalance and
transfer methods from BankAccount

Also has the instance variable, balance, but can’t access it
directly – it is private to BankAccount

– Adds interestRate variable, addInterest method
SavingsAccount fund = new SavingsAccount(5);
fund.deposit(1000); // okay – SavingsAccount inherits deposit
momsAccount.transfer(fund, 500); /* okay – the transfer

method expects a BankAccount type; fund is a BankAccount */
BankAccount general = fund; // okay – a 2nd reference
general.addInterest(); // error – not a BankAccount method
/* even though: */ general instanceof SavingsAccount is true

Note: 4 ways to refer to objects
First 2 ways are trivial:

– A superclass reference to a superclass object
– A subclass reference to a subclass object
3rd way is safe, but limiting:

– A superclass reference to a subclass object -
BankAccount genfund = new SavingsAccount(5);

Now genfund can only access BankAccount methods

4th way is illegal without explicit cast
– A subclass reference to a superclass object -

SavingsAccount mySavings;
mySavings = genfund; // error
mySavings = (SavingsAccount)genfund; // okay

Inheritance begets hierarchies Part of javax.swing hierarchy

3

Class hierarchies in Java
Always plain in Java, because each class can
only extend one other class
– No platypus-type classes allowed (like in c++)

Can implement more than one interface though
– But subclasses do inherit from superclass parents

e.g., if OutdoorBasketball extends Basketball, then an
OutdoorBasketball is a Basketball and a Ball

– All Java classes: descendants of class Object
So every object is an Object by definition!

Good hierarchies simplify programming
– Take advantage of tested code; don’t reinvent wheels

A simple
bank
account
hierarchy

Writing subclasses
3 possibilities for instance methods:
– Inherit – i.e., do nothing
– Override – have new method act differently

Note: use super reference to access superclass method
– Define new – abilities not in superclass at all

e.g., CheckingAccount (p. 458)
2 possibilities for instance variables:
– Inherit – though if private, must use public methods to

access and set
– Define new – data in addition to superclass data

“Shadow variables” – result from trying to override: really
just a new variable with the same name – usually a mistake

Constructing a subclass object
Remember: a subclass definition, by itself, just
defines part of the resulting object

Subclass constructors
Superclass constructor is always invoked first
– i.e., call to super is always the first statement of a

subclass constructor
– If not done explicitly, it will happen implicitly

The compiler puts it there if you don’t!
super(); // so superclass must have no-arg constructor

– Explicit call necessary to use a different superclass
constructor – e.g., see CheckingAccount.java again

FYI: superclass finalize() is always last too

Writing classes to be extended
Always provide a no-argument constructor
Control subclass access as appropriate
– Already know about private and public
– protected – only subclasses and other classes in the

same package can access
– (package) – only classes in same package can access

A.k.a. “friendly” or default access (often omitted by mistake)
Also can inhibit subclass abilities with final
– final class – cannot be extended (e.g., String)
– final method – subclasses cannot override

