
Software Software ““lifecyclelifecycle”” (simplified)(simplified)

1. Problem statement requirements analysis
2. Domain analysis
3. System Design
4. Programming (implementing the design)

– Includes fixing syntax and runtime errors
5. Testing and debugging (not the same thing!)

– Typically iterate – repeat steps 1 to 5 as necessary
6. Maintenance (could be longest, costliest stage)

TestingTesting

Means looking for bugs
– Dijkstra: “testing verifies the presence of

errors, not their absence”
i.e., cannot test all possible situations to insure that
no bugs remain – but job is to try

2 general categories:
– “Black box testing” – best if by independent

tester: he/she doesn’t know internal structure
– “White box testing” – can be more thorough

Unit testingUnit testing

First step of “white box testing”
– Test each unit separately, before mixing them

Each method of each class, each class in each
package, each package in each system …
Includes testing the main method as a unit

– Test methods by “driver programs”
– Use “stubs” for incomplete methods

Next step is integration testing
– But with confidence that each unit is correct!

Test casesTest cases

Goal: test all possible situations
– Usually not realistic (unless program is very simple)

So settle for good test cases
– Fully test normal functionality – routine cases

Be sure to test all branches, even rare ones

– Include boundary cases (e.g., 0, maximums, …)
– And remember to test some invalid cases (e.g., not

number, negative, …)
Good programs should handle gracefully – i.e., don’t “crash”

Testing notesTesting notes
Coverage testing – an ideal that makes sense: test
each line of code with at least one test case
Regression testing – a reality: must re-run all
tests after every program change
– Otherwise, likely that bugs are reinserted
– Need automated tests (e.g., files) to do cheaply

Other testing: hardware, on-site installation, …
Tragic truth: testing takes time!
– But can save time by catching bugs early

Implementing testsImplementing tests

Some tests can be automatically generated
– Either systematic intervals, or random inputs

Much better to use data files – can repeat many
tests without much effort
Sometimes can automatically verify test outputs
– Maybe find a natural calculation
– Or maybe find an “oracle” to use

Or use a testing framework like JUnit

Programming with assertionsProgramming with assertions

Some testing can be built right in
– Easy to test assertions – statements that must be true

Java syntax (since SDK 1.4): assert boolean-expression;
– If boolean expression is true – assert does nothing
– But if false – prints a stack trace and exits

e.g., pre-condition for division – divisor is not 0
assert divisor != 0;

return x / divisor; // know it’s safe now
Also good for post-conditions, invariants, …

InheritanceInheritance
Can create new classes by extending others
– New class is called subclass or “child”
– Extended class is called superclass or “parent”
– Subclass inherits all of superclass’s members

And usually has added, or altered features
But cannot directly access private members

Results in “is a” relationship
– Say class Basketball extends Ball

Then any instance of a Basketball is a Ball
Reverse is not always true: a Ball can be a Football, or …

Inheritance example from textInheritance example from text
class SavingsAccount extends BankAccount

– Inherits withdraw, deposit, getBalance and
transfer methods from BankAccount

Also has the instance variable, balance, but can’t access it
directly – it is private to BankAccount

– Adds interestRate variable, addInterest method
SavingsAccount fund = new SavingsAccount(5);
fund.deposit(1000); // okay – SavingsAccount inherits deposit
momsAccount.transfer(fund, 500); /* okay – the transfer

method expects a BankAccount type; fund is a BankAccount */
BankAccount general = fund; // okay – a 2nd reference
general.addInterest(); // error – not a BankAccount method
/* even though: */ general instanceof SavingsAccount is true

Note: 4 ways to refer to objectsNote: 4 ways to refer to objects
First 2 ways are trivial:

– A superclass reference to a superclass object
– A subclass reference to a subclass object
3rd way is safe, but limiting:

– A superclass reference to a subclass object -
BankAccount genfund = new SavingsAccount(5);

Now genfund can only access BankAccount methods

4th way is illegal without explicit cast
– A subclass reference to a superclass object -

SavingsAccount mySavings;
mySavings = genfund; // error
mySavings = (SavingsAccount)genfund; // okay

Inheritance begets hierarchiesInheritance begets hierarchies

Part of Part of javax.swingjavax.swing hierarchyhierarchy

Class hierarchies in JavaClass hierarchies in Java
Always plain in Java, because each class can
only extend one other class
– No platypus-type classes allowed (like in c++)

Can implement more than one interface though
– But subclasses do inherit from superclass parents

e.g., if OutdoorBasketball extends Basketball, then an
OutdoorBasketball is a Basketball and a Ball

– All Java classes: descendants of class Object
So every object is an Object by definition!

Good hierarchies simplify programming
– Take advantage of tested code; don’t reinvent wheels

A simple A simple
bank bank
account account
hierarchyhierarchy

Writing subclassesWriting subclasses
3 possibilities for instance methods:
– Inherit – i.e., do nothing
– Override – have new method act differently

Note: use super reference to access superclass method
– Define new – abilities not in superclass at all

e.g., CheckingAccount (p. 458)
2 possibilities for instance variables:
– Inherit – though if private, must use public methods to

access and set
– Define new – data in addition to superclass data

“Shadow variables” – result from trying to override: really
just a new variable with the same name – usually a mistake

Constructing a subclass objectConstructing a subclass object
Remember: a subclass definition, by itself, just
defines part of the resulting object

Subclass constructorsSubclass constructors
Superclass constructor is always invoked first
– i.e., call to super is always the first statement of a

subclass constructor
– If not done explicitly, it will happen implicitly

The compiler puts it there if you don’t!
super(); // so superclass must have no-arg constructor

– Explicit call necessary to use a different superclass
constructor – e.g., see CheckingAccount.java again

FYI: superclass finalize() is always last too

Writing classes to be extendedWriting classes to be extended
Always provide a no-argument constructor
Control subclass access as appropriate
– Already know about private and public
– protected – only subclasses and other classes in the

same package can access
– (package) – only classes in same package can access

A.k.a. “friendly” or default access (often omitted by mistake)
Also can inhibit subclass abilities with final
– final class – cannot be extended (e.g., String)
– final method – subclasses cannot override

