
1

Polymorphism
Literally: the ability to assume many forms
OOP idea: a superclass reference can refer to
many types of subclass objects
– Each object may behave differently – if subclasses

override methods
Imagine a Shape class with a draw()method
– Then subclasses Circle, Triangle, … all override draw()

Depends on dynamic method binding
– i.e., actual method is chosen at execution-time
– A.k.a. late-binding – unlike static or final methods

Overriding Object methods
All Java classes inherit methods from Object
– But Object implementation is crude, so override
toString() – “classname@hashcode” in Object
– e.g., to override in BankAccount:

public String toString()
{ return “BankAccount[balance=“+balance+”]”; }

equals(Object other) – same object in Object
– Usually want to change to same contents
– And means should also override hashCode()
clone() – Object makes a shallow copy
– i.e., just copies references of instance variables

Further abstraction
Abstract classes
– have one or more abstract methods,

e.g., abstract class Shape { ...
abstract void draw();

... }
Subclasses of Shape must implement draw()

– Cannot instantiate – not concrete classes, so no such object
But often have constructor for subclass constructors to invoke
i.e., all Shape objects are objects of one of Shape’s subclasses

– Can refer to objects as Shape – then know they can draw()
– e.g., Shape Demo from old CS 5JA class

Subclasses inherit implementation and interface

Interfaces (completely abstract)
A Java interface has no implementation at all
– interface: defines the messages a class responds to if the

class implements the interface
– e.g., “… implements Comparable” means the class

responds to compareTo(Object other);
e.g., don’t extend Shape, implement Drawable:

interface Drawable
{ void draw(Graphics g); }

A class may implement multiple interfaces
– Not really “is a” – more aptly “can refer to as a” – e.g.:

class Box implements Drawable, Comparable
Now can use Drawable or Comparable reference with a Box
Box b = ...; Drawable d = b; d.draw(g);

More on interfaces
All methods are public abstract – omit explicit
modifiers by convention
Constants okay too
– All public static final – omitted by convention
– Must be initialized when declared, of course

Can extend, just like classes
– But okay to extend more than one:
public interface SerializableRunnable

extends java.io.Serializable, Runnable

Tend to be much more flexible than classes
– So they are the basis of many “design patterns” (CS 50 topic)

Abstraction/inheritance notes
Encapsulate common traits by superclasses
– Use polymorphism to affect uniqueness

“Program to the interface” (not the implementation)
– i.e., practice information hiding – what a class does is

important, not how it does it
Best just to share the Javadocs with other programmers!

– So it’s no big deal if implementation changes
Sometimes “is a” not best – too much coupling
– Try “has a” instead (composition, not inheritance)
– Or pure interface approach – Measurable.java (p. 389)

Decoupling with an interface (Chapter 9, Figure 1)

2

Nested classes and interfaces
Okay to define a class (or interface) inside
another class (or interface)
– Good for grouping logically related types

Static nested class – work just like non-nested
– Can extend, or be extended like any other class
– e.g., private class Entry in java.util.LinkedList.java

Inner class – non-static nested type
– Objects are associated with an instance of outer type

– the “enclosing object”
– Both classes can share data – even private

More nested classes/interfaces

Local inner classes – inside methods (or other
blocks)
– Not members of the class – local to the block

– May access any fields – but just final local
variables

– See implementation of Measurer.java (p. 398-402)
Even more decoupling (Chapter 9, Figure 2)

Can even have anonymous inner classes
– Extend a class or implement existing interface
– Easily applicable to RectangleMeasurer example

Exception handling
Necessary for reading/writing most streams
– Also for using threads, networks, …

And best way to treat exceptional situations
Basic idea – if a method detects an exceptional
situation, the method either handles it or throws
it to a competent handler
– Throwing sends it to the caller (next on stack). Then

caller can throw it again, or handle it, and so on.
– Handling an exception means catching it, and doing

something about it

What is an Exception?
Ans: instance of Exception (or one of its subclasses)
– Specific feature: an object you can throw
– Purpose: to signal an exceptional situation
– Effect: terminates and writes message – unless you
catch it on the way up the call chain

Some exceptions are checked by the compiler
– These must be handled or the method must declare it

throws the exception in the header
Includes IOException and subclasses

– Note: the most typical exceptions are unchecked

Easy to define a new exception

First note: lots of good exceptions ready to use (API)
Or can easily define new by extending existing one
public class MyException extends RuntimeException

{ // Note: a RuntimeException is unchecked – so is often a good choice
public MyException(String message)
{ super(message); }

}

Now okay to throw new MyException(“...”);

or catch(MyException e) { ... }

try

Denotes blocks of code that might throw exceptions
Usually followed by one or more catch clauses
– These identify the exceptions they will catch
– Are checked in order – just one will execute

Exception hierarchy is important – always check subclasses first,
or superclass will catch it first

Also finally – optional clause always executes
try { ... // something that might throw exception }
catch(exception-type et) { ... }
catch(different-exception-type det) { ... }
finally { ... // executes no matter what }

