
1

Horstmann quality tips: exceptions
“Throw early, catch late”
– As soon as you don’t know what to do – throw
– Wait to catch until you’re sure how to handle it

“Do not squelch exceptions”
– e.g., catch (Exception e) { } // “So there!”

Incompetent exception handlers create havoc later
“Do throw specific exceptions”
– Better: throw new MyMeaningfulException();

Easy handling: catch(MyMeaningfulException e) {…}

– Worse: throw new RuntimeException();
Now meaningful handler hard to write – must identify problem

2 basic ways to store data
Text format – a sequence of characters
– e.g., 12345 is ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ (actually the binary

equivalent of the Unicode values that represent these characters)

– Purpose: for easy reading/editing by humans
Must translate to/from data – e.g., Integer.parseInt(“12345”)

Binary format – a sequence of logical sets of bytes
– e.g., 12345 stored as 4 bytes: 0 0 48 57 (48*256 + 57;

actually the binary equivalent of these decimal values)

– Purpose: fast reading/writing by computer
No need to translate – already data how the computer wants

To Java they are 2 types of Streams

Character streams
Readers – e.g., FileReader, BufferedReader
– FileReader.read() returns just 1 character at a time
– BufferedReader useful for its readLine() method

Routinely used to pipe FileReader through BufferedReader
– Since Java 5, we can use a Scanner:
FileReader f = new FileReader(“input.txt”);

Scanner input = new Scanner(f); // ☺ (demos)

Writers – e.g., FileWriter, PrintWriter
– PrintWriter has the familiar print and println methods
FileWriter f = new FileWriter(“message”);
PrintWriter pr = new PrintWriter(f);
pr.println(“Have a nice day.”);

Byte streams
InputStream and OutputStream – abstract
superclasses (like Reader and Writer)
– Basic methods – read() 1 byte; write(1 byte)
– FileInputStream and FileOutputStream are subclasses
– DataInputStream and DataOutputStream are too

Note System.in, .out, and .err anomalies:
– All are byte streams (from before character streams

part of API) – but logically are character streams
System.in is an InputStream – but can pipe through a Reader
System.out and .err are PrintStreams – a deprecated subclass
of FilterOutputStream – has same methods as PrintWriter

– But careful: no “is a” relationship to Readers/Writers

Random access files
Not “sequential access” (which has inflexible file pointer)

Use random access for large, often-accessed files
RandomAccessFile f = new RandomAccessFile
(“mydata”, “rw”); // opens for read/write, not just “r”
f.seek(numBytes); // moves file pointer numBytes from start
– Use DataInputStream and DataOuputStream methods:
f.writeInt(anInt); // writes and moves pointer 4 bytes
f.writeDouble(aDouble); // uses next 8 bytes
myNum = f.readInt(); // reads 4 bytes as int, moves pointer

Must keep constant record size to be effective
– See BankData example, pp. 829-832 (in chapter 19)

Object streams
Most convenient way to store objects
– Though usually not the most efficient way

If MyClass implements Serializable, then
MyClass myObject = ...; // can read/write whole objects
ObjectOutputStream out = new ObjectOutputStream
(new FileOutputStream(“myobjects”)); // opens file
out.writeObject(myObject); // writes the whole object!

Reverse everything to read it in another program
ObjectInputStream in = new ObjectInputStream

(new FileInputStream(“myobjects”)); // opens file
myObject = in.readObject(); // now use the object as is

See SerialDemo example, p. 834-835

2

Some other streams
StringWriter, StringReader
– Handy string buffers; no IOExceptions are thrown
PipedOutputStream, PipedInputStream
– Handy way to write/read info between threads
java.net.URLConnection – a handy way to
read a stream over a network
– First create a java.net.URL object:

URL u = new URL(“http://www...”);

– Then create the connection and get the InputStream:
in = u.openConnection().getInputStream();

Introduction to Recursion

Definition of a recursive method:
A method that calls itself, directly or indirectly.

Note: just intro – much more recursion in CS 20
– For now just learn how it works – i.e., how to

implement an algorithm we spell out for you
– In the process, think about why it works
– Begin to consider the range of applications
– And know that you can always iterate instead

The standard example: Fac.java

Recursive solution essentials

Always need a base case
– a.k.a. trivial case, or smallest case
– A way to stop; otherwise infinite recursion

e.g., if (n<=1) in factorial method

Recursive calls converge on base case
– i.e., problems get smaller with each recursion

e.g., factorial(n-1)

Solution must actually solve the problem!

Recursive Drawing Example
Drawing tick marks on a ruler:
– base case: draw nothing (tick too small)
– general case: draw middle tick, then draw left and

right “sub-rulers” (with smaller ticks)
– Pseudocode:

void ruler(int left, int right, int tickHeight) {
if (not done yet) {

int middle = (right - left) / 2;
draw_tick(middle, tickHeight);
ruler(left, middle, tickHeight / 2);
ruler(middle, right, tickHeight / 2);

}
}

Recursive binary searching
Start with a sorted array: a[0..n-1]
Binary searching algorithm is naturally recursive:

int bsearch(Type key, Type a[], int left, int right) {

/* first call is for left=0, and right=n-1 */
int middle = (left + right) / 2;

if (key == a[middle]) return middle; /* success */
if (left > right) return -1; /* unsuccessful */
if (key > a[middle]) /* search one half or the other */

return bsearch(key, a, middle+1, right);
else return bsearch(key, a, left, middle-1);

}

Iterative version is a little trickier (but not too hard)

