
1

Iterative binary searching
int bsearch(Type key, Type a[], int n) {

int low = 0, high = n-1, middle;
while (low <= high) {

middle = (low + high) / 2;
if (key == a[middle])

return middle; /* success */
if (key > a[middle]) low = middle + 1;
else high = middle – 1;

}
return -1; /* unsuccessful */

}

Both versions take log2n steps on average to find
a value or find out the value is not in the array

Towers of Hanoi and 8 Queens
Move n disks from a to c; use b to hold (demo)
void tower(int n, int a, int b, int c)

– Base case: just one disk – trivial
if (n==1) moveOneDisk(a→c);

– General case: assume a method that can move a tower
of height n-1. This method!!!
else {

tower(size n-1, a→b with c holding);
moveOneDisk(a→c);
tower(size n-1, b→c with a holding);

}

One more example – 8 queens problem

Sorting
Probably the most expensive common operation
– And maybe the most studied CS problem

Problem: arrange a[0..n-1] by some ordering
– e.g., in ascending order: a[i-1]<=a[i], 0<i<n

Two general types of strategies
– Comparison-based sorting – includes most strategies

Lots of simple, inefficient algorithms
Some not-so-simple, but more efficient algorithms

– Address calculation sorting – rarely used in practice
But very fast if the data are suitable

Selection sort

Idea: build sorted sequence at end of array
At each step:
– Find largest value in not-yet-sorted portion
– Exchange this value with the one at end of unsorted

portion (now beginning of sorted portion)
Easy to do (see text p. 629), but complexity is O(n2)
– Huh?

largest

 sorted

Big-Oh notation
A way to compare algorithms – just algorithms
All but the “dominant” term are ignored
– e.g., say algorithm takes 3n2 + 15n + 100 steps

(problem of size n) – 1st term dominates for large n
Constants are due to processor speed, compiler,
language features, … – so ignore the 3
Means this example algorithm is O(n2)
– Pronounced “Oh of n-squared” – a.k.a., it is in the

“quadratic complexity” class of algorithms

Some complexity classes

Linear - O(n); Quadratic - O(n2); Cubic - O(n3)
– Also slower than cubic – e.g., Exponential - O(2n)
– And faster than linear – O(log n), and Constant - O(1)

0
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50 60 70 80 90 100

Input Size (n)

Quadratic

O(n log n)
Linear

Cubic

2

mergeSort
A “divide and conquer” sorting strategy
– Idea: (1) divide array in two; (2) sort each part; (3)

combine two parts to overall solution
mergeSort – has a naturally recursive solution
if (more than one item in array):

divide array into left half and right half;
mergeSort(left half); mergeSort(right half);
merge(left half and right half together);

– Requires helper method to merge two halves
Actually where all the work is done (p. 640)

Complexity is O(n log n)
– i.e., lots faster than selectionSort

How much faster is lots faster?
Use a stopwatch to get
some idea
– See SelectionSortTimer
– Of course – actual

times depend on …
– But MergeSortTimer is

clearly much faster
Moral: sometimes it
pays to apply a better
algorithm – despite the
extra effort.

