Iterative binary searching

int bsearch(Type key, Type a[], int n) \{ int low = 0, high = n-1, middle;
while (low <= high) \{
middle = (low + high) / 2;
if (key == a[middle])
return middle; /* success */
if (key > a[middle]) low = middle + 1; else high = middle - 1;
\}
return -1; /* unsuccessful */
\}

- Both versions take $\log _{2} n$ steps on average to find a value or find out the value is not in the array

Towers of Hanoi and 8 Queens

- Move n disks from a to c; use b to hold
- Base case: just one disk - trivial
if ($\mathrm{n}==1$) moveOneDisk $(a \rightarrow c)$;
- General case: assume a method that can move a tower of height n-1. This method!!!

```
else {
        tower (size n-1, a >b with c holding );
        moveOneDisk(a->c);
        tower (size n-1, b->c with a holding);
    }
```

- One more example - 8 queens problem

Sorting

- Probably the most expensive common operation
- And maybe the most studied CS problem
- Problem: arrange a[0. .n-1] by some ordering
- e.g., in ascending order: a[i-1]<=a[i], 0<i<n
- Two general types of strategies
- Comparison-based sorting - includes most strategies
- Lots of simple, inefficient algorithms
- Some not-so-simple, but more efficient algorithms
- Address calculation sorting - rarely used in practice
- But very fast if the data are suitable

Selection sort

largest

- Idea: build sorted sequence at end of array
- At each step:
- Find largest value in not-yet-sorted portion
- Exchange this value with the one at end of unsorted portion (now beginning of sorted portion)
- Easy to do (see text p .629), but complexity is $0\left(\mathrm{n}^{2}\right)$
- Huh?

Big-Oh notation

- A way to compare algorithms - just algorithms
- All but the "dominant" term are ignored
- e.g., say algorithm takes $3 n^{2}+15 n+100$ steps (problem of size n) $-1^{\text {st }}$ term dominates for large n
- Constants are due to processor speed, compiler, language features, ... - so ignore the 3
- Means this example algorithm is $0\left(\mathrm{n}^{2}\right)$
- Pronounced "Oh of n-squared" - a.k.a., it is in the "quadratic complexity" class of algorithms

Some complexity classes

- Linear - 0(n); Quadratic - 0 (n^{2}); Cubic - $0\left(n^{3}\right)$
- Also slower than cubic - e.g., Exponential - 0(2n)
- And faster than linear $-0(\log n)$, and Constant $-0(1)$

mergeSort

- A "divide and conquer" sorting strategy
- Idea: (1) divide array in two; (2) sort each part; (3) combine two parts to overall solution
- mergeSort - has a naturally recursive solution if (more than one item in array): divide array into left half and right half; mergeSort(left half); mergeSort(right half); merge(left half and right half together);
- Requires helper method to merge two halves
- Actually where all the work is done (p. 640)
- Complexity is $0(\mathrm{n} \log \mathrm{n})$
- i.e., lots faster than selectionSort

How much faster is lots faster?

- Use a stopwatch to get some idea
- See SelectionSortTimer
- Of course - actual times depend on ...
- But MergeSortTimer is clearly much faster
- Moral: sometimes it pays to apply a better
 algorithm - despite the ${ }_{\text {Figure } 2}$ extra effort.

