Programming graphics

e Need a window — javax.swing.JFrame

— Several essential steps to use (necessary “plumbing”):

o Set the size — width and height in pixels
e Set a title (optional), and a close operation
o Make it visible

— See EmptyFrameViewer.java (p. 59)

o Add javax.swing.JComponents to window
— Draw shapes, colors, ... on these components

e That’s all there is to it!
— Except for the painstaking labor, of course

Drawing rectangles for example

e Define class that extends JComponent

— Or a subclass like JPanel for additional features
e Implement paintComponent method

— Use Graphics object passed to this method

e Actually a Graphics2D object since Java 1.2

— Then let that object draw Rectangle objects

— See RectangleComponent.java (p. 61)
e Add the component to a frame for viewing

- e.g., RectangleViewer.java

Java.awt.Graphics2D

e Is a subclass of java.awt.Graphics
— So cast is allowed; and Graphics methods inherited
— If don’t cast, must use primitive drawing methods:
e cg, drawRect(int, int, int, int),
fillOval(int, int, int, int),...
e i.c., not object-oriented — so lots of work to use/reuse
e But Graphics2D can do a lot more stuff
— e.g., draw(java.awt.Shape) draws any Shape,
including Rectangle, E1lipse2D, Polygon, ...
— Ffill(Shape) draws and fills Shape with current color

Drawing more complex shapes

o Text example (p. 114-116) — Car.java
— Acts like a Car that can draw itself
— Car constructor sets X and y locations
— Includes draw(Graphics2D g2) method

e Lets Graphics2D object draw lines, ellipses, rectangles

e A class like CarComponent.java just uses it:
Car myCar = new Car(x, Yy);

myCar .draw(g2); // passes reference to graphics object

o Still need a view window, like CarViewer.java

Color

e Current color applies to text, lines, and fills:
g2.setColor(Color.RED);

g2.draw(..); // draws ... in red
g2.setColor(Color.BLUE);

g2.Fill(.); //fills ... with blue
e Custom colors available:
— Can set by float values in range 0.0F to 1.0F:

Color gb = new Color(0.0F, 0.7F, 1.0F);
g2.setColor(gb);

— Or by int values in range 0 to 255:
Color bg = new Color(0, 255, 175);

Rendering text with Graphics2D

e Actually necessary to “draw” the text at a
specified location on the Graphics object
— g.drawString(aString, X, y) —uses
current rendering context (e.g., color), and
current text attributes (e.g., font)
e Font: a face name, a style, and a point size
Font f =
new Font(“Serif”, Font.BOLD, 24);

g2.setFont(f); // sets font for g2

Applets — an alternate approach

e A way to run a program — but not an application
— No main method necessary
e Need a subclass of Applet (or JApplet)
— So: class __ extends Applet (orextends JApplet)
® Most web browsers know how to create a new
applet, and how to use certain Applet methods
— So, applets must be embedded in an html page

— And, to be useful, they must include at least one of the
methods the browser invokes (e.g., paint)

“Running” an Applet

e The applet is started by the web browser as soon as the
web page (html file) is visited
o The html file (stands for hypertext markup language) — must have
an applet tag in it:
<applet code=AppletClassName.class
width=### height=###>
</applet> <!--needs a closing tag too ——>
e The browser works in a certain order:

Creates a new applet object — includes a window, a Graphics object, lots
of class Applet methods

— Invokes (1) init—once, (2) start — first & return visits, (3) paint —
first & every need to paint (also stop, destroy)

Implementing a “simple” applet

e import javax.swing.JApplet; // mandatory
— Also usually Graphics and Graphics2D and others

e Declare a class that extends JApplet:
public class RectangleApplet extends JApplet

e Implement paint method (at least)
— Same procedures as paintComponent for components

o Create an html file to load the applet in a web
browser or the appletviewer (provided with JDK)

e See RectangleApplet.java (p. 63) and related html
files (p. 64)

Images

e Images are not drawings
— You don’t draw them, you show them
— But Graphics method is called drawlmage anyway
e Image is an abstract class
— Generally, create instance by loading from file or URL
— Can also create/edit by classes in java.awt.image
e Applets know how to get images (ImageApplet)

— Applications use Toolkit to get (demo)
Toolkit.getDefaultToolkit().getlmage("javacup.gif");

Events

EventObject

e Signals from the outside
— Usually user initiates:

e Mouse click, button push,
menu-select, enter text, ...

— Not always: TimerTesterjava | , . v componeat
Event
e Eacheventhasatype—a L

class in java.awt.event T

AWTEvent

WindomEvent

KeyEvest

— So each event is an object ‘ TsgutEvent

— Created almost constantly
(by Java window manager) —

MosseEvent

Event sources

e Technically: can be any external signal
— Including from a different program or system
e c.g., a “client” applet contacting a web “server”
— In a GUI, focus is on user signals
e Java Components generate the events
— Each component generates different event types, e.g.:
o Panels (inc. Applets) > MouseEvents
o Textfields and buttons - ActionEvents
e Windows - WindowEvents
e Keyboard > KeyEvents

— Components inform a list of Listeners about events

Listeners Inner class listeners

e Objects that components tell about events e Can access private instance variables of outer class

— Must have methods a component can invoke — Stores implicit reference to outer class object
e i.e., implements one of the Listener interfaces

— Must be added to a component’s listener list) ;
e Different listeners apply to different messages * ¢.g., RectangleComponentViewer java
— ActionListener — actionPerformed e Notice they can access Final local variables too
e ¢.g., ClickListener (with ButtonTester.java)
— MouseListener —mouseClicked, mouseEntered, ...

— So can often “handle” events more easily

— Another example: TimerTester2.java

e c.g., MouseSpy demo (from 1t edition of textbook) — Must be final so no ambiguity about value
e Note: also can extend Adapter class instead of — For example, no opportunity for variable to go out of
implement listeners directly — saves busywork © scope while object exists
Laying out GUI components Choosing a layout manager
® Depends on layout | e c.g., agrid layout for [pmm———T=T
f<l - t . e
manager T calculator buttons:
- Deiz;ults. I panel .setLayout(new 7 8 9 ‘
. rame: i -
BorderLayout Gridlayout(4,3));
o TPancl. 0 panel .add(button?7); 4 5 6
FlowLayout iy panel .add(button8);
— Others: panel .add(button9); 1 2 3 ‘
¢ GridLayout panel .add(button4);
e GridBaglLayout --- 1] CE ‘
e Can set new, and w0y oo || e ® ¢.g., CS10Display.java

even make custom

Text components

Choices
e JLabel —not for user input, just display))
e JTextField — for one row of text e Choice objects generate ActionEvents
— new JTextField(), or (int columns) ° Ik;l()a‘cr)l;iéz'r? g?;tﬂgzeicsl(SB;;(eirégc‘i]??d ioButton: use
— getText(), setText(String), setFont(Font), i . . .
setEditable(boolean), ... (mostly inherited) — Note: put radio buttons in a ButtonGroup — so just

— ActionEvent on <enter> one can be selected at a time

e JTextArea — for multiple rows of text
— new JTextArea(), or (int rows, int columns)
— Same methods inherited from JTextComponent
— Generates no events, so usually use with a button

— For same reason — should visually group them in a
panel with a border, like EtchedBorder

e For JComboBox: use getSelectedltem()
— Note: returns Object — usually cast to String

® c.g., ChoiceFrame.java (see FontViewer java, pp. 794-798)

Menus

e Steps to implement swing menus:

— 1. Add a menu bar to a JFrame
JMenuBar bar = new JMenuBar();
setJIMenuBar (bar);

— 2. Add menus to the menu bar
IMenu fileMenu = new JMenu(“File™);
bar.add(fileMenu);

— 3. Add menu items to the menus, & listeners to items

JMenultem openltem = new JMenultem(*“Open™);
fileMenu.add(openltem);

openltem.addActionListener(listener);
e c.g., MenuFrame.java (see FontViewer2.java, pp. 803-7)

Sliders, and more swinging

e Note - good text section 18.4, pp. 808-814:
should read while browsing API on web
— About how to “discover” swing features/usage

e Focuses on JSlider — generates ChangeEvents, so
addChangeL istener (listener), where listener
implements stateChanged method

e Requires javax.swing.event for “change” events
— e.g., SliderFrame.java (scc ColorViewerFrame java, pp. 812-814)
e Explore swing as needed, or even just for fun
— Buy a book, or look at API classes starting with “J”
— Or just run the SwingSet demo from the JDK

