What Is abstraction?

e \Workable answer — a blurring of details

e |dea: agree to ignore certain details (for now)

— e.g., with procedural abstraction — idea Is to convert
original problem to a series of simpler problems

e \Works for data types too

— Think (and write code) in terms of abstract data types
like Lists, Stacks, Trees, ...
e What should matter — what you can do with a List
o What should not matter — what goes on inside the List

— Assume the ADT works — just use it!

A Priority Queue ADT

e ADT is defined by its interface — what it does
e If PQItem and PriorityQueue are defined types
void 1nsert(PQltem, PriorityQueue *);

/ * add the item to the queue */
PQltem remove(PriorityQueue *);

/ * always returns item with highest priority */
int empty(PriorityQueue *);
[* true if gueue has no items */
void initialize(PriorityQueue *);
/[* or similar constructor function */

e Never mind how It works — think about that later

Interface Is enough to use ADT

e Easy way to sort — let a priority queue do it
voild easySort(PQltem af[], 1int n) {
int 1; PriorityQueue pqg;
inttialize(&pq);
for (1=0; i1<n; &++) /*putall items in priority queue*/
insert(ali], &pq);
for (1=n-1; 1>=0; 1--) /*items come out sorted */
af1] = remove(&pq);
}+ /* There are more efficient ways to sort, but that’s not the point. */

e The point Is that we can use it without knowing
how it works.

e Abstraction Is good!

Of course, It does have to work

e Many ways to implement — text covers 2:

— Maintain a sorted list of items:
e INnsert — some work: insure item Is inserted 1n order
e remove — easy: remove the first item

— Keep Items In an unsorted array:

e Insert — easy: append item as last array element

e remove — harder: search for highest priority item,
and move last array element to emptied slot

e Binary tree method works best — later topic

Decomposition and C modules

e S0 user just needs the interface:

— €.g., #include “PriorityQueue.h”
e Which may vary between implementations — but better not to
e The implementation Is In a separate file:
— Usually PriorityQueue.c, and separately compiled
e This file also has #include PriorityQueue.hin it

e This organization has at least two major benefits:

— Implementation details hidden from user
e User less likely to mess it up, & doesn’t have to think about it

— Critical interface declarations stored in a single place

Scoping rules

e Refer to the “visibility” of identifiers

long x; float y; Int z; /[**global” variables*/

void fn(char c, iInt x) { /* parameter x hides global x */
double y = 3.14159; /[* local y hides global y */
extern iInt z; [* refer to global z */
{ char y; /* hides first local y */

Yy = C; [* assign to second local y */

by
y =y / 3.0; /* assign to first local y */
Z++; /* increment global z */

¥
e Translation unit —a file, and #included files

— Extent of “global’” scopes, unless extern is used

Compiling, linking, & make files

e Compiling only —e.g., gcc -c pgm.c
— Creates object file called pgm.o (or pgm.obj in DOS)
e Linking only —e.g., gcc pgm.o —o pgm
— Makes executable file called pgm (or pgm.exe in DOS)
e Can automate process with a Makefile:
pgm: pgm.o # dependency

gcc pgm.o —0 pgm # action (tab is required)
pPgm.o: pgm.cC
gcc -C pgm.c

— Then just type “make” — Unix tool executes the
actions as necessary to satisfy the dependencies

Dealing with multiple modules

e Imagine a program for factorial, consisting (for
illustrative purposes only) of 3 modules:

— contains the function prototype
— implements the function
— uses the function
— Both .c files #include “factorial.h”

S — separately compiles testfac and
factorial, then links them

— If just change factorial .c — make recompiles that
file only and relinks to existing testfac.o

Abstract lists

e Text’s ch. 4 lists more abstract than ch. 2

— Info stored as ItemType

e Then typedef int ItemType, or any other type
— #i1nclude lItemlnterface.h —redefined as necessary

— List node operations are very general:
void setLink(NodePointer, NodePointer)
NodePointer getLink(NodePointer)
void setltem(NodePointer, Listltem)

[* where typedef ItemType Listltem */
Listltem getltem(NodePointer)

e |dea Is to hide the implementation details

Even more abstract lists

e One way: store info as void *
— Then can point to anything
— Only way to apply polymorphic abstraction in C

e Another way: hide internal data structures
completely — give no access to nodes

— Not just function implementations can be hidden

— Necessary to provide an iterator mechanism, because
user has no direct access to links
o Simplifies list usage, and prevents tampering

Basic List ADT

— (very) abstract data type for lists

— Allows handling of any type of data:
typedef void *InfoPointer;

— Completely hides implementation details:
typedef struct ListTag *ListPointer;
e Structure declared here; defined in basiclist.c

e Might be implemented as array or other way — user doesn’t
have to know; user can’t mess it up
— Requires initialization to set things up:
ListPointer createList(void);

e In this case, have to allocate space for list structure, and
Initialize all pointers to NULL

Basic list ADT (cont.)

e Accessor functions access info, not nodes
InfoPointer fTirstinfo(ListPointer);
InfoPointer lastinfo(ListPointer);
InfoPointer currentinfo(ListPointer);

— User cannot incorrectly handle nodes
e €.0., Can never set node->11nk = node;

e Insert functions do not copy info, just pointers
void InsertFirst(InfoPointer, ListPointer);
e Can also insert last, or before or after current

e Delete functions return copies of deleted pointers
InfoPointer deleteFirst(ListPointer);
e Can also delete last or current

