Using a heap as a priority queue

e To remove highest priority item from heap:
remove root; /* 0(1) complexity */
Move last item to root, then ...
heapify in reverse; /*0(log n) complexity */
— So overall complexity is 0(log n)
e Also 0(log n) for insert function
e Compare to other priority queue strategies
— Sorted list: insert — o(n); remove — 0(1)
— Unsorted array: insert — 0(1); remove — 0(n)
e Choose heap strategy If n Is expected to be large




A table ADT

Declare Table type (define in implementation)
typedef struct TableTag Table;
— Also define a KeyType, and maybe a DataType (or just use void *)

Let user define initial size of table
Table *createTable(int startingSize);

Can put/get/update/remove info associated with unigue key
int put(KeyType key, void *info, Table *table);
void* get(KeyType key, Table *table);

int update(KeyType key, void *info, Table *table);
int remove(KeyType key, Table *table);

— Functions return false if unsuccessful (except get returns NULL)

Can print all info, usually in key order
void printAll(Table *table);




Table implementation options

e Many possibilities — depends on application
— And how much trouble efficiency is worth
e Option 1: use a BST
— To put: insertTree using key for ordering
— To update: deleteTree, then insertTree
— To getAll: use in-order traversal
e Option 2: sorted array with binary searching (later)
e Option 3: Implement as a “hash table”
— Hashing — general technique works great with tables




Hashing ideas and concepts

e Idea: transform arbitrary key domain (e.g.,
strings) into “dense integer range” — then use
result as index to table

— index = hash(key); /* function returns int */
e Collisions: hash(kl)==hash(k2), k1 1= k2

— Usually impossible to avoid (“perfect hashing”), so
must have a way to handle collisions

— e.g., probe for empty slot if using “open addressing™ -
while (Tempty(index)) index = probe(key);

e Concept: Insertion/searching Is quick — but only
until the table starts to get filled up

— Then collisions start happening too often!




Open address hashing
— & Implementing basic table ADT

e Define structs for table items and whole table of items

typedef struct

{ KeyType key; void *info; } Tableltem;
typedef struct

{ Int size; Int n; Tableltem *1tems; } Table;

— size Is size of array; n Is the number of items in the table
— Constructor allocates memory for array of items, and initializes
all items to “empty” key
e The put function uses hash(key) and probe(key) to
find empty slot for new item

— Resizes array (and rehashes existing items) whenever table “load
factor” reaches 50 percent (rule of thumb for open addressing)




Open address hashing (cont.)

get & update functions use hash(key) and
?_robe(ke_y) In exact same sequence as put —to
Ind existing info

e remove IS more complicated

— Cannot just remove an item — future probes for get
and update might terminate prematurely at empty slot

— Inefficient technique rehashes all items

— Alternative technique uses “deleted” key markers
e But problem with that is table fills up prematurely

e printAll in key order — must sort first!
— S0 0(n log n) at best!




Resolving collisions

e Simplest open address approach is linear probing

— If (index = hash(key)) IS not empty, try index+1,
then index+2, ..., until empty slot

— In other words, searching for first “open address”
— Biggest problem: it leads to “primary clusters”
e Quadratic probing — varies probe, like 1, 3, 6, ...
— Leads to “secondary clusters” but not as quickly
e Double hashing — probe (key) varies by key
— Best open addressing approach for avoiding clusters
e Or a completely different approach: “chaining”




Chaining

Table is an array of pointers to lists:
typedef struct TableTag
{ Int size; Int n;
ListPointer *lists; };

Constructor allocates memory for array, and creates an
empty list for each element of the array

put function uses hash(key) and appends to end of list

— Clustering not a problem, but long lists can be, so rule
of thumb is resize when load factor approaches 80%

remove function is easier now — just delete from list

But lots more overhead than open addressing
— Must store node pointers as well as key and info
— Use list function calls instead of direct array access



Recursive binary searching

e Start with a sorted array: a[0..n-1]
— Useful item in a IS struct{key, info} ItemType;

e Binary searching algorithm is naturally recursive:

iInt bsearch(KeyType key, ltemType al[],
int left, iInt right) {

[* first call is for 1eft=0, and right=n-1 */

int middle = (left + right) /7 2;

if (key == a[middle].key) return middle; /*success */
if (left > right) return -1; /*unsuccessful */

if (key > a[middle].key) /* search one half or the other */
return bsearch(key, a, middle+l, right);
else return bsearch(key, a, left, middle-1);

}
e lterative version is a little trickier (but not too hard)




Iterative binary searching

int bsearch(KeyType key, ltemType a[], int n) {
int low = 0, high = n-1, middle;
while (low <= high) {
middle = (low + high) / 2;
iIT (key == a[middle].key)
return middle; /*success */
iIT (key > a[middle].key) low = middle + 1;

else high = middle — 1;
+

return -1:; /*unsuccessful */

}
e Both versions are same complexity class

— But recursive version has more overhead, so actually
runs a bit slower than iterative version

— Interpolation search, by the way, is in a faster class




Complexity of binary search

e Say array has 15 elements, k, . .k;: a[0. .14]
— If key is at kg (a[7]) then found by 1 comparison
— If key Is at k, or k,,, takes 3 comparisons ...

e I.e., It’sjust like searching a BST

e Problem size is halved
at each step

— So complexity class Is
O(log n)

e Interpolation search
reduces more quickly

— Classis 0(log log n)




Compare 3 table implementations

Table operation Hash table BST Sorted array

create o(n) 0(1) o(n)

find, get, update o) O(log n) O(log n)

put o(D) O(log n) o(n)
remove o) O(log n) o(n)

printAll O(n log n) o(n) o(n)

e Conclusion — depends on table purpose & n size
— Hash table wins for most applications if n is large
— BST wins if expect to printAll frequently
— Sorted array might win for small n — to minimize overhead/work




SYelqilgle

e Probably the most expensive common operation
e Problem: arrange a[0. .n-17] by some ordering
— e.g., Inascending order: af 1-1]<=a[1], O<i<n
e Two general types of strategies
— Comparison-based sorting — includes most strategies
e Apply to any comparable data — (key, info) pairs

e Lots of simple, inefficient algorithms
e Some not-so-simple, but more efficient algorithms

— Address calculation sorting — rarely used In practice
o Must be tailored to fit the data — not all data are suitable
e Won’t cover in CS 12 — see proxmap and radix sorts in sec. 13.6




Selection sort

largest

sorted
e |dea: build sorted sequence at end of array
e At each step:
— Find largest value in not-yet-sorted portion

— Exchange this value with the one at end of unsorted
portion (now beginning of sorted portion)

e Complexity Is 0(n2)— but simple to
— Also - best way to find k™" largest, or top k values




Insertion sort

e Generally “better” than other simple algorithms

e Inserts one element into sorted part of array
— Must move other elements to make room for it

current

e Complexity Is 0(n?)
— But runs faster than selection sort and others in class
— Really quick on nearly sorted array
e Often used to supplement more sophisticated sorts




Divide & conquer strategies

e Idea: (1) divide array in two; (2) sort each part;
(3) combine two parts to overall solution

e €.g., mergeSort
iIT (nmore than one item in array):
divide array into left half and right half;

mergeSort(left half); mergeSort(right half);
merge(left half and right half together);

— Requires helper method to merge two halves
— Complexity 1Is0(n log n)
— The best sort for large files (too big for memory)

e But for most problems, quickSort Is a better
divide & conquer strategy




Quick sort

e Basic quicksort algorithm is recursive
iIT (there 1s something to sort)
{ partition array elements;
sort left part; sort right part;

¥} /* 1t’s the utility partition function that does all the work! */
e Partition idea: arrange elements around an arbitrary pivot

pivot

all <= pivot all >= pivot

scan from (1 = left) until a[i1] >= pivot;
scan from (J = right) until a[j] <= pivot;
swap al[i1], alJl;

continue both scans until 1 > j;




Quick sort (cont.)

e Complexity IsO(n log n) on average
— Fastest comparison-based sorting algorithm

— But overkill, and not-so-fast with small arrays
e One frequently-used optimization applies insertion sort for

partitions smaller than than 10 or so
e But worst case 1S 0(n2)!

— Just like BST worst case — sorted order can be bad
o Especially if first or last is chosen as pivot — middle is better
e By the way — see gsort In <stdlib.h> (code)

— Also by the way — see 0(n) address calculation sorts
If really fast sorting Is required for an application




