
CSci 135 Software Analysis and Design I

Command Line Arguements

Stewart Weiss

Processing Command-Line Arguments

In a UNIX environment, when you type a command such as

g++ main.cpp utils.cpp fileio.cpp

or

rm file1 file2 file3 file4

and press the Enter key, the shell program parses this command-line into words separated by whitespace
characters. A word is usually any sequence of non-whitespace characters1. The �rst word on the command
line, except in certain unusual commands, is the name of a program or a shell built-in command to be
run. In the above examples, it is g++ and rm respectively. The words that follow the program name are
called command-line arguments. In the �rst example above, the command-line arguments are main.cpp,
utils.cpp, and fileio.cpp. In the second example, they are file1, file2, file3, and file4.

In UNIX and in other POSIX-compliant operating systems, the operating system arranges for the program
name and the command-line arguments to be made available to the program itself via parameters to the
main() function. Programs can ignore this information by writing the main function as

int main () { /* program here ... */ }

However, the C and C++ standards require compliant implementations of C and C++ to accept a main()

with two parameters as follows:

int main (int argc, char * argv[]) { /* program here ... */ }

The �rst parameter is an integer specifying the number of words on the command-line, including the name
of the program, so argc is always at least one. The second parameter is an array of C strings that stores all
of the words from the command-line, including the name of the program, which is always in argv[0]. The
command-line arguments, if they exist, are stored in argv[1], ..., up to argv[argc-1]. If you have not seen
the char* type, refer to the notes on C strings and pointers on this website.

Also note that there is nothing special about the names of two parameters argc and argv; they can be
whatever names you want them to be. It is a convention to use the names argc and argv, although you will
often �nd programs that use ac and av instead. You can name them foo and bar but that would be pretty
bad programming style.

A simple C++ example that illustrates how a program can access the command-line arguments is below.
This simple program does nothing more than display the name that the user typed to execute the program,
followed by the command-line arguments that it received from the shell.

#include <iostream >

using namespace std;

int main(int argc , char *argv [])

{

1Certain symbols such as the shell redirection operators, semicolons, quotes, and so on, are not considered words in this

sense.

1

michaelcostanzo
Text Box
Downloaded from www.compsci.hunter.cuny.edu/~sweiss/resources/cmmdlineargs.pdf.

CSci 135 Software Analysis and Design I

Command Line Arguements

Stewart Weiss

cout << argv [0] << " : ";

for (int i = 1; i < argc ; i++){

cout << argv[i] << " ";

}

cout << endl;

return 0;

}

Whenever you write a program that expects command-line arguments you must check whether the expected
number of arguments was provided by the user. Otherwise, the program will attempt to access locations in
the array of arguments that do not exist.

For example, suppose that you write a program that expects the names of two �les on the command-line,
the �rst being the name of a �le to open for reading and the second being the name of a �le to open for
writing. Suppose that the name you give to the program executable is myprog. Then proper use of myprog
would be something like

myprog inputfile outputfile

There have to be at least three words on the command-line for your program to run properly. There might
be more, but it can ignore those words. Therefore, the program should only run if the �rst parameter to
main() is at least 3. The program must therefore begin with

int main (int argc , char * argv[])

{

/* declarations here */

if (argc < 3) {

/* handle the incorrect usage here */

cerr << usage: << argv [0] << " i n p u t F i l e N a m e o u t p u t F i l e N a m e \ n ";

exit (1);

}

/* rest of program */

}

If the user did supply the correct number of arguments, then it is safe for the program to access the strings
from the second parameter. The program might look something like

int main (int argc , char * argv[])

{

ifstream fin;

ofstream fout;

if (argc < 3) {

/* handle the incorrect usage here */

cerr << usage: << argv [0] << " i n p u t F i l e N a m e o u t p u t F i l e N a m e \ n ";

exit (1);

}

fin.open(argv [1]);

if (fin.fail()) /* handle the error here */

fout.open(argv [2]);

if (fout.fail()) /* handle the error here */

/* rest of program */

}

2

CSci 135 Software Analysis and Design I

Command Line Arguements

Stewart Weiss

A Re�nement

If the user types a command such as

../../proj1/testcode/myprog infile

and forgot to include the output �le, the above code would produce output such as

usage: ../../proj1/testcode/myprog inputFileName outputFileName

If you do not want to display the entire path name of the program, but prefer that it only displays

usage: myprog inputFileName outputFileName

then you have to strip o� the leading part of the argv[0] string so that the only thing left is what comes
after the �nal '/' character. The C string library has a function that will make this easy, provided you are
familiar with pointers.

You can use the strrchr() function, whose prototype is

char *strrchr(const char *source, int ch);

This function �nds the last occurrence in the string source of the character ch. If ch is not in source, then
it returns a NULL pointer. Therefore a strategy for displaying the characters of the program name after the
�nal '/' is to check whether it has a slash, and if it does, display the part after it. The simplest way to do
this is to take advantage of the fact that the program is allowed to modify the argv[] array. In particular,
it can change what argv[0] points to. The following C++ program does just this.

#include <iostream >

#include <cstring >

using namespace std;

int main(int argc , char * argv [])

{

char *forwardslashptr;

forwardslashptr = strrchr(argv[0], '/ ');

if (forwardslashptr != NULL)

/* argv [0] does contain the '/', so reset it so it points to

the character just past the '/' character. Nothing needs

to be done if it has no slash.

*/

argv [0] = forwardslashptr +1;

cout << argv [0] << " : ";

for (int i = 1; i < argc ; i++){

cout << argv[i] << " ";

}

cout << endl;

return 0;

}

This program uses �pointer arithmetic�. The line

3

CSci 135 Software Analysis and Design I

Command Line Arguements

Stewart Weiss

argv[0] = forwardslashptr+1;

sets the argv[0] string, which is, remember, a pointer to an array of characters, to the value obtained by
adding one to the address stored in forwardslashptr. The compiler translates pointer addition to add
however many bytes are needed by the type of thing that the pointer points to. In other words, if a pointer
points to a char and a char takes up one byte, it adds 1. Therefore the above instruction causes argv[0]
to point to the �rst character after the slash.

4

