Computer Science 20 Programming Methods

- Pre-requisites: CS 10 and Math 3B
- Main emphasis: learn about data structures
 - Including related topics, such as abstraction, specialized algorithms, and efficiency issues
- A main goal: increase your programming skills
 - In Java, as well as the design and application of object-oriented solutions to problems
 - Requires *practice* and a commitment of time/effort

Stuff you should already know

- *Catch up by yourself* if necessary on any of these:
 - How to write/execute a Java *application*
 - Comments, primitive data types, basic operators, arithmetic, assignment, type casting for primitive types
 - Control structures if/else, switch, while, for, do/while, conditional operator
 - Writing/using classes, and method basics including parameters, scope and duration rules, and overloading
 - Other *elementary* Java or programming topics
- Tip: keep your CS 10 (or other Java) book handy

What CS 20 will reinforce (to start)

- Basics of objects and references
- Strings and arrays
- Exception handling
- Input and output
- Some OOP concepts and related Java issues
 - Class design and javadocs
 - Methods of class Object
 - Inheritance and polymorphism
 - Abstract classes and interfaces

Approximate schedule (generally follows Dale/Joyce/Weems text)

- 1. Reinforce important Java and OOP topics
- 2. Complexity concepts, correctness and testing
- 3. Data abstraction ideas, and start priority queues
- 4. Stacks, Recursion, and 1st midterm exam
- 5. Queues, and Lists
- 6. Trees, including heaps and faster priority queues
- 7. Binary search trees, and 2nd midterm exam
- 8. Sorting algorithms
- 9. Searching algorithms, and hash tables
- 10. Maybe more *as time permits*

Requirements

- Students are *required* to monitor the course's web pages, starting at http://www.cs.ucsb.edu/~mikec/cs20
- Assignments 30%
 - Weekly written homeworks and bi-weekly programming projects
 - Must work individually unless explicitly told otherwise
- Three exams each 20%
- Attendance 10%

To do this week

- Read chapters 1 and 2 in Dale/Joyce/Weems text
 - In general, try to read ahead of the lectures
 - Also Section 9.1, and browse Appendices as necessary
- Verify CSIL access
 - Need account @engineering.ucsb.edu (@cs is alias) apply online if don't already have one
 - Change password if required sign on and acclimate
- Attend class inc. discussion section Thursday
- Questions?

What is a reference?

- Actually a reference variable
 - A variable that can store a memory address
 - Refer to objects or null, but not primitive types
- Very few operations allowed for references
 - Just assignment with = or equality test with ==
 - Only exception is + for Strings
- Mostly references are used to operate on objects
 - Access internal field or call a method with . operator
 - Type conversion with (cast), or test with instanceof

Dealing with objects

- Declaring and creating 2 discrete steps
- Garbage collection behind the scenes
- = copies a reference creates alias
- == true if references are aliases
 - Use equals (if overridden for the class) to compare objects
- Parameters always *copies* even for references
 - But alias can be used to operate on the object
- No operator overloading allowed
 - Reason: what you see is what you get with Java (except for String + and += operators)

Strings

- Immutable objects means safe to share references
- + concatenates if either is string: 5 + "a" \rightarrow "5a"
- Comparing strings requires methods, not ==, <, ...
 - sl.equals(s2) overridden Object method true if all same characters in same order
 - sl.compareTo(s2) from interface Comparable returns int
- Converting from/to other types
 - String.valueOf(x) overloaded many times
 - Other direction less standard Integer.parseInt(s)

More string things

- StringBuffer and StringBuilder mutable strings
 - StringBuilder b = new StringBuilder(aString);
 - b.append(anotherString);
 - Also b.insert, b.setCharAt, b.reverse, ...
 - b.toString() creates String when done
- StringTokenizer handy way to break up a string
 - StringTokenizer t = new StringTokenizer(aString);
 while (t.hasMoreTokens())
 - { String word = t.nextToken(); ... }
- See <u>online documentation</u> for class String, and others

Arrays

- Built-in data structures a.k.a. collections
- Entities (array elements) are *all the same type*
 - Access each entity by array indexing operator []
- Declare, create, and assign values 3 distinct steps

 Declare array variable: int[] a; // type restricted to int
 Create array object: a = new int[5]; // size is fixed at 5
 - 3. Assign values: for (int i = 0; i < 5; i++) a[i] = ...

• Treat whole array like any other Object

- int[] b = a; // creates an alias not a copy of array
- someMethod(a); // passes alias a can be changed
- An instance variable (a.length), and inherited methods!

Preview: better collections

•	<pre>java.util.ArrayList - an array-like structure - Expands dynamically, so no need to set fixed size ArrayList<integer> a = new ArrayList<integer>();</integer></integer></pre>				
	 Note use of Java 5 generic type – Integer in this case 				
•	 Must wrap primitive types: 				
	a.add(new Integer(7));				
	a.add(17); // or rely on "autoboxing"				
•	Unwrap on retrieval:				
	<pre>int i = ((Integer) a.get(0)).intValue();</pre>				
	<pre>int j = a.get(1); // or rely on "auto un-boxing"</pre>				
•	Overrides Object methods – to make more sense				

How complex is that algorithm?

- *Count* the steps to find out
- Note that execution time depends on many things
 - Hardware features of particular computer
 - Processor type and speed
 - Available memory (cache and RAM)
 - Available disk space, and disk read/write speed
 - Programming language features
 - Language compiler/interpreter used
 - Computer's operating system software
- So execution times for algorithms differ for different systems but complexity is more basic

A detailed computer model

- Assume constant times for various operations
 - $-T_{fetch}$ time to fetch an operand from memory
 - $-T_{store}$ time to store an operand in memory
 - $-T_+, T_-, T_*, T_+, T_-, \dots$ times to perform simple arithmetic operation or comparison
 - T_{call}, T_{return} times to call and return from methods
 - $-T_{[\cdot]}$ time to calculate array element's address
- e.g., time to execute y = x is $T_{fetch} + T_{store}$ - Note: y = 1 takes same time - 1 is stored somewhere

More counting steps

• $y = y + 1 \rightarrow 2T_{fetch} + T_{+} + T_{store}$ - Same as time for y += 1, y++, and ++y• $y = f(x) \rightarrow T_{fetch} + 2T_{store} + T_{call} + T_{f(x)}$ Method example - public int sumSeries(int n): int result = 0; $\rightarrow T_{\text{fetch}} + T_{\text{store}}$ for (int i = 1; $\rightarrow T_{\text{fetch}} + T_{\text{store}}$ $i <= n; \rightarrow (2T_{fetch} + T_{<}) * (n+1)$ i + +) $\rightarrow (2T_{\text{fetch}} + T_{+} + T_{\text{store}}) * n$ result += i; $\rightarrow (2T_{\text{fetch}} + T_{+} + T_{\text{store}}) * n$ return result; $\rightarrow T_{\text{fetch}} + T_{\text{return}}$ Let $t_1 = 5T_{\text{fetch}} + 2T_{\text{store}} + T_{<} + T_{\text{return}}$ and $t_2 = 6T_{\text{fetch}} + 2T_{\text{store}} + T_{<} + 2T_{+} \rightarrow$ then total time for method is $t_1 + t_2 n$

Things to notice about counts

- Very tedious even for simple algorithms
- Operation times are constant only for particular computer/compiler/... situations
- The size of the problem matters the most
- e.g., total of $t_1 + t_2 n$ from previous slide
 - t₁ and t₂ vary, depending on platform
 - The second term dominates if n is large
- So is there a better way to compare algorithms?

Algorithm analysis

- Really want to compare *just the algorithms*
 - i.e., holding constant things that don't matter
 - Question becomes which algorithm is more efficient on *any computer in any language*?
- Solution 'O' notation
 - Simplest is worst case analysis Big-Oh
 - Provides an upper bound on expected running time
 - Others include Little-Oh, Big Ω (omega), and Big Θ (theta) – all useful, but not as commonly used

Big-Oh notation

- Strips problem of inconsequential details
 - All but the "dominant" term are ignored
 - e.g., say algorithm takes $3n^2 + 15n + 100$ steps, for a problem of size n
 - Note: as n gets large, first term (3n²) dominates, so okay to ignore the other terms
 - Constants associated with processor speed and language features are ignored too
 - In above example, ignore the 3
- So this example algorithm is $O(n^2)$
 - Pronounced "Oh of n-squared"
 - Belongs to the "quadratic complexity" class of algorithms

Formally, f(n) is O(g(n)) if \exists two positive constants (K, n_0), such that $|f(n)| \leq K|g(n)|, \forall (n \geq n_0)$

'O' and related notation

• **Big-Oh** – upper bound on running time - f(n) is O(g(n)) if there are positive constants, c and n_0 , such that $f(n) \leq cg(n)$ when $n \geq n_0$ • Big Ω – lower bound on running time -f(n) is $\Omega(g(n))$ if $\dots f(n) \ge cg(n)$ when $n \ge n_0$ • Big Θ – both an upper *and* lower bound - f(n) is $\Theta(g(n))$ iff f(n) is O(g(n)) and f(n) is $\Omega(g(n))$ • Little-Oh – a "strictly-less" than upper bound - f(n) is o(g(n)) iff f(n) is O(g(n)) and f(n) is not $\Theta(g(n))$

Some complexity classes

• Linear - O(n); Quadratic - $O(n^2)$; Cubic - $O(n^3)$

- Also slower than cubic e.g., Exponential $O(2^n)$
- And faster than linear $-O(\log n)$, and Constant -O(1)

Applies to large problems only

- Big-Oh measures asymptotic complexity
 - Mostly irrelevant for small problems
 - But some algorithms become impractical as n grows, even if n isn't very large
- For example, imagine n = 256
 - And say a linear algorithm takes 256 microseconds
 - Cubic time is 16.8 seconds
 - Exponential time (base 2) is 3.7x10⁶³ years!!!

(See related calculations on next slide.)

Big O	Microsec.	Millisec.	Seconds	Years
O(n)	256			
O(log n)	8			
O(n log n)	2,048	2.05		
O(n^2)	65,536	65.54		
O(n^3)	16,777,216	16,777	16.8	
O(2^n)	1.158E+77	1.158E+74	1.158E+71	3.7E+63

Algorithm analysis example

double[] prefixAverages1(double[] x) →
double[] result = new double[x.length];
for (int i=0; i<x.length; i++)
{ double sum = 0; // happens n times
 for (int j=0; j<=i; j++)
 sum += x[i]; // happens n(n+1)/2 times
 result[i] = sum / (i+1); // n times
}return result; // happens once
• Running time dominated by *nested* for loops
 – Approximate total is (n + n(n+1)/2 + n + 1) → so O(n²)

Improved algorithm

- double[] prefixAverages2(double[] x) →
 double[] result = new double[x.length];
 double runningSum = 0; // O(1)
 for (int i=0; i<x.length; i++)
 { runningSum += x[i]; // O(n)
 result[i] = runningSum/(i+1);// also O(n)
 }return result; // O(1)
 </pre>
 - So overall complexity is O(n)

Runtime analysis

- Use to *complement (not replace)* algorithm analysis
 - Calculate elapsed clock time for operations
 - long startTime = System.currentTimeMillis();
 - {...} // operation to time here
 - long finishTime = System.currentTimeMillis();
 - long elapsedTime = finishTime startTime;
 - Java 1.5 addition: long instant = System.nanoTime();
 - 1 millisecond \rightarrow 1,000,000 nanoseconds !!!
- e.g., <u>Timing Random.java</u> (Collins text, pp. 88-89)
- Of course results are infected by competing processes
 - Also by machine, compiler and system characteristics
 - But often can crudely estimate Big O anyway <u>Collins lab 4</u>

What Big-Oh doesn't cover

• Small problems

- Often dominated by lesser terms or constants
- What to count?
 - Comparisons? Assignments? Reads? Writes?
 - Some operations take longer than others
 - So usually just count iterations see <u>CountSteps.java</u>
- Notice the definition is not restrictive
 - e.g., an algorithm that is O(n) is also O(n²), etc.
 - So *agree* to express bound as tightly as possible, and to not include lesser terms in g(n)