
1

Inheritance
Can create new classes by extending others
– Subclass inherits all members of superclass

But cannot directly access private members
– Can add new fields and new methods
– Can override existing methods
– Cannot remove fields or methods

Can only extend one other class in Java
– Makes for clear hierarchies (less complication)
– But indirectly extend superclass’s parent, …

All Java classes are descendants of Object

Note: composition another way to reuse code

Polymorphism
Literally: the ability to assume many forms
OOP idea: a superclass reference can refer to
many types of subclass objects
– Each object may behave differently – if subclasses

override methods
Imagine a Shape class with a draw()method
– Subclasses Circle, Triangle, … override draw()

– Then say void picture(Shape s) { s.draw(); }
Object s is a Shape or a subclass of Shape

Relies on “dynamic method binding”

Abstract classes and interfaces
Abstract class has one or more abstract methods
– Subclasses must implement these methods
– Cannot instantiate – objects must be subclass objects
– Subclasses inherit implementation and interface

A Java interface has no implementation at all
– e.g., “… implements Comparable” means the class

responds to compareTo(Object other)

– A class may implement multiple interfaces
No implementation to inherit – so no complications

More about interfaces
All methods are public abstract – omit explicit
modifiers by convention
Constants okay too
– All public static final – omitted by convention
– Must be initialized when declared

Can extend, just like classes
– But okay to extend more than one:
public interface SerializableRunnable

extends java.io.Serializable, Runnable

Tend to be much more flexible than classes as a way to
unite objects in system designs
– Hence the basis of many “design patterns”

What is abstraction?
Workable answer – a blurring of details
Idea: agree to ignore certain details (for now)
– Convert original problem to a simpler problem
– Procedural abstraction is one way to simplify – main

algorithm calls methods to handle detailed steps
Works for data types too
– Think (and write code) in terms of abstract data types

like Lists, Stacks, Trees, …
What should matter – what you can do with a List
What should not matter – what goes on inside the List

– Assume the ADT works – just use it!

Example: A Priority Queue ADT

ADT is defined by its interface – what it does
Imagine a PriorityQueue with these methods:

void insert(Comparable item);

/ * add the item to the queue */
Comparable remove();

/ * always returns item with highest priority */
boolean isEmpty();

/* true if queue has no items */

Never mind how it works – think about that later

2

Interface is enough to use ADT
Easy way to sort – let a priority queue do it
void easySort(Comparable a[]) {

PriorityQueue pq = new PriorityQueue();
int i, n = a.length;
for (i=0; i<n; i++) // put all items in queue

pq.insert(a[i]);
for (i=n-1; i>=0; i--) // items come out sorted

a[i] = pq.remove();
} // There are more efficient ways to sort, but that’s not the point.

The point is that we can use it without knowing
how it works.
Abstraction is good!

Linked data structures
Made up of nodes and links between nodes
– As purpose is data storage/retrieval, also contains

information field(s) inside nodes
Simplest is a linear linked list with single links:
– Key is to define a node class to hold info and a link:
class ListNode { // note: class Entry<E> in Collins text

Object data;
ListNode next;

... /* maybe set and get methods for fields if not nested class */ }
– By convention, next == null if last node in list

Otherwise it refers to next node in the list

So what is a linked list, really?
Answer: a sequence of zero or more nodes, with
each node pointing to the next one
Need: a reference to the first node – first

– Often this reference is considered “the list”
– Might be null – just means it is an empty list

DUS ORD SAN

L

List class can hide details
Interface says nothing about list nodes
Best to prevent clients from direct node access
– Clients don’t have to know nodes even exist!
– Clients cannot set links inappropriately

Easiest way (with Java) – private nested class:
public class LinkedList {

ListNode first;
…
private static class ListNode { }

}

Nested classes/interfaces
Okay to define a class (or interface) inside
another class (or interface)
– Good for grouping logically related types
– Nested and outer class share data – even private

If declared static – works just like non-nested
– Can extend, or be extended like any other class
– Can only access static fields/methods of outer class

If not declared static – called an inner class
– Instances of the inner class are associated with an

instance of outer class – the “enclosing object”

FYI: more Java nested classes
Local classes
– Defined inside methods or other blocks
– Not members of the class – local to the block

Anonymous classes
– When just want an object; no need for type
– Must extend existing class or implement interface

Purpose is to override one or more methods
– Used frequently for event-handling:
new ActionListener (// define anonymous class right here:
{ public void actionPerformed(ActionEvent e) {…} }
);

3

Collection hierarchy (simplified)

 <interface>>

 Collection

E

 <<interface>>

 List

E

 AbstractList
 E

ArrayList
E

 <interface>>

 Set

AbstractSet

LinkedList
E TreeSet HashSet E E

E

E

See RandomList.java and RandomSet.java (Collins pp. 111, 114)

Map hierarchy (simplified)

 <interface>>

 Map

K, V

AbstractMap

TreeMap HashMap

K, V

K, V K, V

See StudentMap.java (Collins p. 117)

Testing
Goal is to find faults
Faults (a.k.a. bugs) cause systems to fail
– e.g., a system crashes – the most obvious type of fault
– e.g., a security system that allows unauthorized entry
– e.g., a shot-down video game plane continues on path

Can verify the presence of bugs, not their absence
– Testing fails if no bugs are found! (a good thing really)

Testing and debugging are separate processes
– Testing identifies; debugging corrects/removes faults

Testing steps

Unit testing – insure each part is correct
– Independently test each function in each file

Integration testing – insure parts work together
– Test functions working together; not whole system yet

System testing – insure system does what it is
supposed to do
– Lots of testing left to do – especially for large systems
– Includes functional tests, performance tests,

acceptance tests, and installation tests

Testing approaches
Black box testing – best by independent tester
– Plan good test cases, and conduct automated tests

Open box testing – a separate, preliminary activity
– “Coverage testing” is the goal

i.e., test every line of code at least once

– Includes unit testing and integration testing
Regression testing – repeat tests frequently
– Because fixing a new bug may re-introduce old ones
– Easy to do with automated testing framework

Test plans (i.e., test data contents)

Test a representative sample of normal cases
– Usually no way to test all possibilities

But don’t really need to – random sample of cases okay
– At least be sure to test all normal operations

Test boundary cases
– Test the extremes – includes empty cases, lone cases,

last case, first case, …, any other “edge” cases
Test error cases too
– e.g., test how bad input is handled – should not crash!

4

Program Correctness
A correct program (1) always produces the right
answer, and (2) terminates
Predicate logic – used to verify partial
correctness of program segments: p{S}q
– If predicate p is true, after program segment {S}

executes (and terminates), predicate q is true
– e.g., x > 0 {z = x + y} z > y

Basic idea: trace the algorithm (step by step) –
verify correctness of intermediate results
– And/or test such assertions in the code itself

Programming with assertions
Assertions are conditions that should all be
true for a program to be considered correct
Most important types of assertions:
– Method “contract” clauses

Pre-conditions – must be true on function entry
Post-conditions – must be true on function exit, if
the pre-conditions were true beforehand

– Loop invariants – must be true on each
iteration

Javadoc

Cheap external documentation – get to know it
– /** Comment each public declaration.

* Including classes, variables, methods.
* Use @param, @return, @throws, other tags. */

Let clients “program to the interface, not the
implementation” – all they see is the interface
– But must be complete – even if redundant sometime
– Most critical – pre-conditions and post-conditions

Remember to update to reflect any changes!

Executable assertions

Historical origin – a C macro called assert
– e.g., pre-condition of inverse(x) is that x is not zero

double inverse(int x)

{ assert(x != 0); /* halts with message if x == 0 */
return 1. / x; /* better than crashing here */ }

Java counterpart available since version 1.4
– New keyword assert, and related class
AssertionError:
assert x!= 0; // throws AssertionError if false

More executable assertions

New keyword, assert, required special handling
for compilation before version 1.5
– e.g., javac -source 1.4 MyProgram.java

Otherwise got syntax errors wherever assert keyword used

– Of course, cannot use assert as an identifier either
– Likewise cannot compile at all with 1.3 or earlier

Also must enable assertions when run
– e.g., java -ea MyProgram

– Idea is to speed up run-time if code is already tested

More using assertions
Also use assert to check post-conditions
– In this case, errors are the fault of this method

And assert loop invariants – useful for debugging
Q. Why assert to check your own code?
– Answer: catch bugs early and effectively

Bugs appear as soon as testing begins
Also know where bug occurred, and maybe where to fix it

Note: use assert as a development tool ONLY
– Just do not use -ea parameter for execution

Also note: use other exceptions to enforce public
method contracts – as specified in javadocs

5

Exceptions
Object-oriented way to signal exceptional conditions
– When a method does not know what else to do, it should
throw an Exception object (or Error object in
extreme cases)

If invoked in a try block, the calling method can
catch an exception if it knows how to handle it –
otherwise exception passes through.
If not handled by any method, execution stops with
error message

Exception types

Checked exceptions – must be caught, or the
method must declare that it throws that
exception type
– Includes IOException and all of its subclasses

Unchecked exceptions – subclasses of
RuntimeException
– e.g., ArithmeticException,
NumberFormatException,
IllegalArgumentException

