Inheritance

e Can create new classes by extending others
— Subclass inherits all members of superclass
e But cannot directly access private members
— Can add new fields and new methods
— Can override existing methods
— Cannot remove fields or methods
e Can only extend one other class in Java
— Makes for clear hierarchies (less complication)
— But indirectly extend superclass’s parent, ...
o All Java classes are descendants of Object
e Note: composition another way to reuse code

Polymorphism

e Literally: the ability to assume many forms

e OOP idea: a superclass reference can refer to
many types of subclass objects

— Each object may behave differently — if subclasses
override methods

e Imagine a Shape class with a draw() method
— Subclasses Circle, Triangle, ... override draw()

— Then say void picture(Shape s) { s.drawQ; }
e Object s is a Shape or a subclass of Shape

e Relies on “dynamic method binding”

Abstract classes and interfaces

e Abstract class has one or more abstract methods
— Subclasses must implement these methods
— Cannot instantiate — objects must be subclass objects
— Subclasses inherit implementation and interface

e A Java interface has no implementation at all

- eg., “... implements Comparable” means the class
responds to compareTo(Object other)
- A class may implement multiple interfaces
o No implementation to inherit — so no complications

More about interfaces

e All methods are publiic abstract —omit explicit
modifiers by convention

e Constants okay too
— Allpublic static final - omitted by convention
— Must be initialized when declared
e Can extend, just like classes
— But okay to extend more than one:
public interface SerializableRunnable
extends java.io.Serializable, Runnable

e Tend to be much more flexible than classes as a way to
unite objects in system designs

— Hence the basis of many “design patterns”

What is abstraction?

o Workable answer — a blurring of details
e Idea: agree to ignore certain details (for now)
— Convert original problem to a simpler problem
— Procedural abstraction is one way to simplify — main
algorithm calls methods to handle detailed steps
e Works for data types too
— Think (and write code) in terms of abstract data types
like Lists, Stacks, Trees, ...
o What should matter — what you can do with a List
e What should not matter — what goes on inside the List
— Assume the ADT works — just use it!

Example: A Priority Queue ADT

e ADT is defined by its interface — what it does
e Imagine a PriorityQueue with these methods:
void insert(Comparable item);
/* add the item to the queue */
Comparable remove();

/* always returns item with highest priority */
boolean isEmpty(Q);

I* true if queue has no items */
e Never mind how it works — think about that later

Interface is enough to use ADT

e Easy way to sort — let a priority queue do it
void easySort(Comparable a[]) {
PriorityQueue pg = new PriorityQueue();
int i, n = a.length;
for (i=0; i<n; i++) //putallitemsin queue
pg-insert(alil);
for (i=n-1; i>=0; i--) //itemscome out sorted
a[i] = pqg.remove();
} /1 There are more efficient ways to sort, but that’s not the point.
e The point is that we can use it without knowing
how it works.

e Abstraction is good!

Linked data structures

e Made up of nodes and links between nodes
— As purpose is data storage/retrieval, also contains
information field(s) inside nodes
e Simplest is a linear linked list with single links:
— Key is to define a node class to hold info and a link:
class ListNode { /I note: class Entry<E> in Collins text
Object data;
ListNode next;
... I* maybe set and get methods for fields if not nested class */ }
— By convention, next == null if last node in list
e Otherwise it refers to next node in the list

So what is a linked list, really?

e Answer: a sequence of zero or more nodes, with
each node pointing to the next one

e Need: a reference to the first node — first
— Often this reference is considered “the list”
— Might be null — just means it is an empty list

©\

List class can hide details

e Interface says nothing about list nodes

e Best to prevent clients from direct node access
— Clients don’t have to know nodes even exist!
— Clients cannot set links inappropriately

e Easiest way (with Java) — private nested class:

public class LinkedList {
ListNode first;

private static class ListNode { }

Nested classes/interfaces

e Okay to define a class (or interface) inside
another class (or interface)

— Good for grouping logically related types
— Nested and outer class share data — even private
o |f declared static — works just like non-nested
— Can extend, or be extended like any other class
— Can only access static fields/methods of outer class
o If not declared static — called an inner class

— Instances of the inner class are associated with an
instance of outer class — the “enclosing object”

FYI: more Java nested classes

e Local classes
— Defined inside methods or other blocks
— Not members of the class — local to the block
e Anonymous classes
— When just want an object; no need for type
— Must extend existing class or implement interface
e Purpose is to override one or more methods
— Used frequently for event-handling:

new ActionListener (// define anonymous class right here:

{ public void actionPerformed(ActionEvent e) {.} }
s

Collection hierarchy (simplified)

See RandomL.ist.java and RandomSet.java (Collins pp. 111, 114)

Map hierarchy (simplified)

See StudentMap.java (Collins p. 117)

Testing

e Goal is to find faults

e Faults (a.k.a. bugs) cause systems to fail
— e.g., a system crashes — the most obvious type of fault
— e.g., a security system that allows unauthorized entry
- e.g., a shot-down video game plane continues on path

e Can verify the presence of bugs, not their absence
— Testing fails if no bugs are found! (a good thing really)

e Testing and debugging are separate processes
— Testing identifies; debugging corrects/removes faults

Testing steps

e Unit testing — insure each part is correct
— Independently test each function in each file
e Integration testing — insure parts work together
— Test functions working together; not whole system yet
e System testing — insure system does what it is
supposed to do
— Lots of testing left to do — especially for large systems

— Includes functional tests, performance tests,
acceptance tests, and installation tests

Testing approaches

e Black box testing — best by independent tester

— Plan good test cases, and conduct automated tests

e Open box testing — a separate, preliminary activity
— “Coverage testing” is the goal
e i.e, test every line of code at least once

— Includes unit testing and integration testing

e Regression testing — repeat tests frequently

— Because fixing a new bug may re-introduce old ones

— Easy to do with automated testing framework

Test plans (i.e., test data contents)

e Test a representative sample of normal cases

— Usually no way to test all possibilities

e But don’t really need to — random sample of cases okay

— At least be sure to test all normal operations
e Test boundary cases

— Test the extremes — includes empty cases, lone cases,

last case, first case, ..., any other “edge” cases

e Test error cases too

- e.g., test how bad input is handled — should not crash!

Program Correctness

e A correct program (1) always produces the right
answer, and (2) terminates

e Predicate logic — used to verify partial
correctness of program segments: p{S}q

— If predicate p is true, after program segment {S}
executes (and terminates), predicate q is true

-eg, Xx>0{z=x+y}rz>y

e Basic idea: trace the algorithm (step by step) —
verify correctness of intermediate results
— And/or test such assertions in the code itself

Programming with assertions

e Assertions are conditions that should all be
true for a program to be considered correct
e Most important types of assertions:
— Method “contract” clauses
o Pre-conditions — must be true on function entry

e Post-conditions — must be true on function exit, if
the pre-conditions were true beforehand

— Loop invariants — must be true on each
iteration

Javadoc

e Cheap external documentation — get to know it
— /** Comment each public declaration.
* Including classes, variables, methods.
* Use @param, @return, @throws, other tags. */
e Let clients “program to the interface, not the
implementation” — all they see is the interface
— But must be complete — even if redundant sometime
— Most critical — pre-conditions and post-conditions
o Remember to update to reflect any changes!

Executable assertions

e Historical origin —a C macro called assert
— e.g., pre-condition of inverse(x) is that x is not zero
double inverse(int x)
{ assert(x != 0); /* halts with message if x == 0*/
return 1. / Xx; /* better than crashing here */ }
e Java counterpart available since version 1.4
— New keyword assert, and related class
AssertionError:

assert x!= 0; // throws AssertionError if false

More executable assertions

e New keyword, assert, required special handling
for compilation before version 1.5

— €.0., javac -source 1.4 MyProgram.java
o Otherwise got syntax errors wherever assert keyword used
— Of course, cannot use assert as an identifier either
— Likewise cannot compile at all with 1.3 or earlier
e Also must enable assertions when run
— e.¢., java -ea MyProgram

— ldea is to speed up run-time if code is already tested

More using assertions

e Also use assert to check post-conditions
— In this case, errors are the fault of this method
e And assert loop invariants — useful for debugging
e Q. Why assert to check your own code?
— Answer: catch bugs early and effectively
o Bugs appear as soon as testing begins
e Also know where bug occurred, and maybe where to fix it
e Note: use assert as a development tool ONLY
— Just do not use -ea parameter for execution
e Also note: use other exceptions to enforce public
method contracts — as specified in javadocs

Exceptions

e Object-oriented way to signal exceptional conditions

— When a method does not know what else to do, it should
throw an Exception object (or Error object in
extreme cases)

e If invoked in a try block, the calling method can
catch an exception if it knows how to handle it —
otherwise exception passes through.

e |f not handled by any method, execution stops with
error message

Exception types

e Checked exceptions — must be caught, or the
method must declare that it throws that
exception type

— Includes 10Exception and all of its subclasses

e Unchecked exceptions — subclasses of

RuntimeException

- e.g.,, ArithmeticException,
NumberFormatException,
111egalArgumentException

