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Monday, July 6

First exam

Stacks
LIFO data structure
– Last In, First Out

All items except last 
item pushed are 
inaccessible
So has very few 
possible operations:
– push, pop, peek, 
isEmpty, isFull, 
size, clear

Lots of applications
First item pushed
Last item popped

Last item pushed
First item popped

Top (next item)

Applying stacks
Can be used to eliminate recursion
– Iteration and stacks instead of recursive calls

For each “recursive” step
– Push critical data values

While stack is not empty
– Pop values – like “return” from recursive call

– It’s how the compiler does it
Pushes “activation record” (a.k.a., “stack frame”) for every 
function call, not just recursive ones

In fact, idea applies to any nested structure
– Recursion is just a nesting of function calls
– What about nested parentheses in expressions?

Stack interface for general data
Store Object data items (or <T>)
void push(Object item); // push item on stack
Object pop(); // pop top item from stack
– So can refer to anything – even other stacks!

No need to reprogram stack for every application

User works a little harder to use though
– Easiest to do with utility methods like:

void pushInt(int value, Stack stack);
// creates Integer object and pushes it on the stack

int popInt(Stack stack);
// pops from stack, casts, and gets int value from object

Checking balanced ( ), [ ], { }

Okay to nest, like {x/[y*(a+b)]}
Not okay to mismatch (or nest improperly)
– (a/(x + y) is missing a right parenthesis
– ( x + [y-2)] is mismatched at [ )

Parentheses fully match if the following works:
for (each character in the expression) {

if a left parenthesis - push it on the stack;

if a right parenthesis

pop matching left parenthesis from stack

} stack is empty at the end

Postfix (and prefix) notation
Also called “reverse Polish” – reversed form of 
notation devised by mathematician named Jan 
Łukasiewicz (so really lü-kä-sha-vech notation)
Infix notation is: operand operator operand
– Like 4 + 22

– Requires parentheses sometimes: 5 * (2 + 19)

Postfix form is: operand operand operator
– So 4 22 +

– No parentheses required: 5 2 19 + *

Prefix is operator operand operand: + 4 22
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Evaluating postfix expressions

Algorithm (start with an empty stack):
while expression has tokens {

if next token is operand /* e.g., number */
push it on the stack;

else /* next token should be an operator */
{ pop two operands from stack;

perform operation;
push result of operation on stack; }

}

pop the result; /* should be only thing left on stack */

Postfix evaluation example
Expression: 5 4 + 8 *
– Step 1: push 5
– Step 2: push 4
– Step 3: pop 4, pop 5, add, push 9
– Step 4: push 8
– Step 5: pop 8, pop 9, multiply, push 72
– Step 6: pop 72 – the result

A bad postfix expression is indicated by:
– More than one value on stack at end
– Less than two operands to pop when operator occurs

Evaluating infix expressions
Simplest type: fully parenthesized
– e.g., ( ( ( 6 + 9 ) / 3 ) * ( 6 - 4 ) )

Still need 2 stacks: 1 numbers, 1 operators
while tokens available {

if (number) push on number stack;
if (operator) push on operator stack;
if ( ‘(‘ ) do nothing;
else { /* must be ‘)’ */

pop two numbers, and one operator;
calculate; push result on number stack;

} 

} /* should be one number left on stack at end: the result */

Converting infix to postfix
Operator precedence matters
– e.g., 3+(10–2)*5 3 10 2 - 5 * +

Algorithm uses one stack; prints results 
(alternatively, could append results to a string)

– For each token in the expression:
if ( number ) print it;
if ( ‘(‘ ) push on stack;
if ( ‘)’ )

pop and print all operators until ‘(‘;
discard ‘(‘;

if ( operator ) /* more complicated – next slide */

Infix to postfix (cont.)
/* call current token the “new operator” */
while (stack is not empty)

peek at top operator on stack;
if (top operator precedence >= new operator)

pop and print top operator;
else break out of while loop;

push new operator on stack after while;

– At end, pop and print all remaining operators. Done.

Notice: We don’t know how a stack is implemented 
yet, but that doesn’t seem to matter.  Does it?

Abstraction is good!!!

Stack interface
interface Stack {

boolean isFull(); // true iff stack is full
boolean isEmpty(); // true iff stack is empty
void clear(); // makes the stack empty
void push(Object item); // inserts item

// pre-condition: !isFull()
Object pop(); // removes/returns last item pushed

// pre-condition: !isEmpty()
Object peek(); // just returns last item pushed

// pre-condition: !isEmpty()
}
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Implementing stacks by arrays
Idea is to keep track of “top” array index
– ArrayStack(int capacity) // constructor –

Object array[] = new Object[capacity];

int top = 0; // some prefer -1 – differences unimportant
– isEmpty() – return top == 0;

– clear() – set top = 0;
– push(Object item) – array[top++] = item;

– pop() – return array[--top]; // notice pre-decrement
– peek() – return array[top-1]; // no decrement

Very efficient, but stack is full when array is full
– isFull() – return top == array.length;

– Can use dynamic array, or even better – use ArrayList

A stack can adapt an ArrayList
No need to keep track of top – let list do that
– ArrayListStack() // no capacity variable either

ArrayList list = new ArrayList();

– isEmpty() – return list.isEmpty();

– clear() – list.clear();

– push(Object item) – list.add(item);

– pop() – return list.remove(list.size()-1);

– peek() – return list.get(list.size()-1);

Never full, but slightly less efficient – method overhead
– isFull() – return false;

Note: or with a LinkedList – usually top is first element

Notice what doesn’t matter
void method(Stack stack) { }
– Is it an ArrayStack? ArrayListStack? Other?
– Use the same way no matter how implemented

Implementation does affect efficiency – time and 
space requirements
Also can affect usefulness (e.g., can get full or not)
But implementation can be changed
– Without any changes to client code!
– Remember to recompile though

Stack operation complexity
Implementing a stack with an array
– peek(), pop() – access last item (remove for pop)

Complexity is O(1) – does not depend on n
– push(object) – add a last item

O(1) if array is not full; otherwise O(n) to resize/copy

Implementing with single-linked list
– peek(), pop() – access first item – Why not last item?

O(1) – but would be O(n) if “top” is last item instead
– push(object) – add a first item

Also O(1)

So same in terms of speed – but different space 
requirements, and different constants/effort 

What is a recursive method?
Ans: a method that calls itself (maybe indirectly)
Standard first example – factorial method:

n! = n * (n-1) * (n-2) * … * 1 (for n > 0)
– Note recursive pattern:

n! = n * (n-1)!     (for n > 1, and 1! = 1)
– Translates immediately to Java:

static int factorial(int n) {
if (n <= 1)

return 1;
else

return n * factorial(n-1);
}

Recursive solution essentials

Always need a base case
– a.k.a. trivial case, or smallest case
– A way to stop; otherwise infinite recursion

e.g., if (n <= 1) in factorial method

Recursive calls converge on base case
– i.e., problems get smaller with each recursion

e.g., factorial(n-1)

Solution must actually solve the problem!
– This part is most important, and the hardest to insure
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Fibonacci – a good example, 
but a poor application

fib(n) = fib(n-2) + fib(n-1),
fib(0) = fib(1) = 1
– Note: general solution has two recursive calls
– Okay, but in this case, recursion is very inefficient! 

fib(5) calls fib(3), fib(3) calls fib(1),
fib(3) calls fib(2), fib(2) calls fib(0),

fib(2) calls fib(1)
fib(5) calls fib(4), …

– Count increases exponentially – 15 calls for fib(5), 
987 calls for fib(15), 2,692,537 calls for fib(30), …

fib(5) – call tree

fib(5) and fib(4) once each, fib(3) twice
fib(2) 3 times, fib(1) 5 times, fib(0) 3 times

fib(5)

fib(3) fib(4)

fib(1) fib(2) fib(2) fib(3)

fib(0) fib(1) fib(0) fib(1) fib(1) fib(2)

fib(0) fib(1)
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Recursive Drawing Example
Handy for some non-numerical problems too
Drawing tick marks on a ruler:
– base case: draw nothing (tick too small)
– general case: draw middle tick, then draw left and 

right “sub-rulers” (with smaller ticks)
void ruler(int left, int right, int tickHeight) {

if (not done yet) {   /* pseudocode */
int middle = (left + right) / 2;
draw_tick(middle, tickHeight);
ruler(left, middle, tickHeight / 2);
ruler(middle, right, tickHeight / 2);

}
}

Maze example

Suppose we are in a grid-like maze, and 
need to find an exit
At each step – can move one square in 
either of four directions, any of which may 
be blocked
Q: how  can we use recursion?
– Key is to find  “smaller” problem

A: assume we know how to get to an exit 
from one of the neighboring squares!

Recursive maze exit finder
findExit(x,y) returns true if exit is reachable from 
maze coordinate (x,y)
boolean findExit(int x, int y) /* first try */
{  if ( x,y is an exit) 

return true;    /* success! */
if (findExit(x+1, y)  return true;
else if (findExit(x-1, y) return true;
else if (findExit(x, y+1) return true;
else if (findExit(x, y-1) return true;
else return false;  /* there’s no way out of here */ }

Base case?   Smaller case?   General solution?
OK OKNot really


