Monday, July 6

First exam

e LIFO data structure

! Top (next item) ! — Last In, First Out
" “Cast item pushed - e All items except last
First item popped item pushed are
inaccessible

® So has very few
possible operations:
— push, pop, peek,
isEmpty, isFull,
First item pushed size,clear
Last item popped e Lots of applications

Applying stacks

e Can be used to eliminate recursion
— TIteration and stacks instead of recursive calls
e For each “recursive” step
— Push critical data values
e While stack is not empty
— Pop values — like “return” from recursive call
— It’s how the compiler does it
e Pushes “activation record” (a.k.a., “stack frame”) for every
function call, not just recursive ones
o In fact, idea applies to any nested structure
— Recursion is just a nesting of function calls
— What about nested parentheses in expressions?

Stack interface for general data

e Store Object data items (or <T>)
void push(Object item); //push item on stack
Object pop(); // pop top item from stack
— So can refer to anything — even other stacks!
o No need to reprogram stack for every application
o User works a little harder to use though
— Easiest to do with utility methods like:
void pushint(int value, Stack stack);
// creates Integer object and pushes it on the stack
int poplInt(Stack stack);
// pops from stack, casts, and gets int value from object

Checking balanced (), [], {}

e Okay to nest, like {x/[y*(a+b)1}
e Not okay to mismatch (or nest improperly)
— (a/(x + y) is missing a right parenthesis
— (x + [y-2)] is mismatched at [)
e Parentheses fully match if the following works:
for (each character in the expression) {
if a left parenthesis - push it on the stack;
if a right parenthesis

pop matching left parenthesis from stack
} stack is empty at the end

Postfix (and prefix) notation

e Also called “reverse Polish” — reversed form of
notation devised by mathematician named Jan
Lukasiewicz (so really lii-kd-sha-vech notation)

e Infix notation is: operand operator operand
— Like 4 + 22
— Requires parentheses sometimes: 5 * (2 + 19)

e Postfix form is: operand operand operator
—So4 22 +
— No parentheses required: 5 2 19 + *

e Prefix is operator operand operand: + 4 22

Evaluating postfix expressions

o Algorithm (start with an empty stack):

while expression has tokens {
if next token is operand /* e.g., number */
push it on the stack;
else /* next token should be an operator */
{ pop two operands from stack;
perform operation;
push result of operation on stack; }
}
pop the result; /* should be only thing left on stack */

Postfix evaluation example

e Expression: 5 4 + 8 *
— Step 1: push 5
— Step 2: push 4
— Step 3: pop 4, pop 5, add, push 9
— Step 4: push 8
— Step 5: pop 8, pop 9, multiply, push 72
— Step 6: pop 72 — the result
® A bad postfix expression is indicated by:
— More than one value on stack at end
— Less than two operands to pop when operator occurs

Evaluating infix expressions

e Simplest type: fully parenthesized
—eg, (((6+9)/3)*(6-4))
o Still need 2 stacks: 1 numbers, 1 operators

while tokens available {
if (number) push on number stack;
if (operator) push on operator stack;
it (“(*) do nothing;
else { /*mustbe “)” */
pop two numbers, and one operator;
calculate; push result on number stack;

s

} 7/* should be one number left on stack at end: the result */

Converting infix to postfix

e Operator precedence matters
- e.g,3+(10-2)*5>3 10 2 - 5 * +
o Algorithm uses one stack; prints results
(alternatively, could append results to a string)
— For each token in the expression:
if (number) print it;
if (“(*) push on stack;
it ()")
pop and print all operators until “(°;
discard “(*;

if (operator) /* more complicated — next slide */

Infix to postfix (cont.)

/* call current token the “new operator” */

while (stack is not empty)
peek at top operator on stack;
if (top operator precedence >= new operator)
pop and print top operator;
else break out of while loop;
push new operator on stack after while;

— Atend, pop and print all remaining operators. Done.

Notice: We don’t know how a stack is implemented
yet, but that doesn’t seem to matter. Does it?

Abstraction is good!!!

Stack interface

interface Stack {
boolean isFull(); // true iff stack is full
boolean isEmpty(); // true iff stack is empty
void clear(); // makes the stack empty
void push(Object item); // inserts item
// pre-condition: YisFull()
Object pop(); / removes/returns last item pushed
// pre-condition: YisEmpty)
Object peek(); // just returns last item pushed
// pre-condition: 'isEmpty)

Implementing stacks by arrays

o Idea is to keep track of “top” array index
— ArrayStack(int capacity) // constructor —
Object array[] = new Object[capacity];
int top = 0; //some prefer -1 — differences unimportant
isEmpty() —return top == 0;
— clear() —set top = 0;
push(Object item) —array[top++] = item;

— pop() —return array[--top]; //notice pre-decrement
— peek() — return array[top-1]; //no decrement
e Very efficient, but stack is full when array is full
— isFull() —return top == array.length;
— Can use dynamic array, or even better — use ArrayList

A stack can adapt an ArrayList

e No need to keep track of top — let list do that

— ArrayListStack() // no capacity variable either
ArrayList list = new ArrayList();

isEmpty() —return list.isEmpty();

— clear() — list.clear();

push(Object item) — list.add(item);
— pop() —return list.remove(list.size()-1);
— peek() —return list.get(list.size()-1);

o Never full, but slightly less efficient — method overhead
— isFull() —return false;

e Note: or with a LinkedList — usually top is first element

Notice what doesn’t matter

e void method(Stack stack) { }
— Is it an ArrayStack? ArrayListStack? Other?
— Use the same way no matter how implemented

e Implementation does affect efficiency — time and
space requirements

e Also can affect usefulness (e.g., can get full or not)
e But implementation can be changed

— Without any changes to client code!

— Remember to recompile though

Stack operation complexity

e Implementing a stack with an array
— peek(), pop() — access last item (remove for pop)
o Complexity is O(1) — does not depend on n
— push(object) — add a last item
e O(1) if array is not full; otherwise O(n) to resize/copy
e Implementing with single-linked list
— peek(), pop() — access first item — Why not last item?
e O(1) — but would be O(n) if “top” is last item instead
— push(object) — add a first item
e Also O(1)
e So same in terms of speed — but different space
requirements, and different constants/effort

What is a recursive method?

e Ans: a method that calls itself (maybe indirectly)
e Standard first example — factorial method:
n!l=n*{-1)*n-2)*.. %1 (for n>0)
— Note recursive pattern:
n!=n* (n-1)! (forn>1,and 1! =1)
— Translates immediately to Java:
static int factorial(int n) {
if (n <= 1)
return 1;
else
return n * factorial(n-1);

Recursive solution essentials

e Always need a base case
— ak.a. trivial case, or smallest case
— A way to stop; otherwise infinite recursion
e eg., if (n <= 1) in factorial method
e Recursive calls converge on base case
— i.e., problems get smaller with each recursion
e c.g., factorial(n-1)
e Solution must actually solve the problem!
— This part is most important, and the hardest to insure

Fibonacci — a good example,

but a poor application

e fib(n) = fib(n-2) + fib(n-1),

fib(0) = fib(1) =1

— Note: general solution has two recursive calls

— Okay, but in this case, recursion is very inefficient!
fib(5) calls fib(3), fib(3) calls fib(1),

fib(3) calls fib(2), fib(2) calls fib(0),
fib(2) calls fib(1)

fib(5) calls fib(4), ...

— Count increases exponentially — 15 calls for fib(5),
987 calls for fib(15), 2,692,537 calls for fib(30), ...

Tib(5) — call tree

fib(5) [8 |
[3]fib3) fib(
fib(1) fib)[2 | fib(z)/ ya
N
fib(0) fib(1) fib(0) fib(1) fib(1) fib@) 2]
v

fib(0) fib(1)

e fib(5) and fib(4) once each, fib(3) twice
e fib(2) 3 times, fib(1) 5 times, fib(0) 3 times

Recursive Drawing Example

e Handy for some non-numerical problems too
e Drawing tick marks on a ruler:
— base case: draw nothing (tick too small)
— general case: draw middle tick, then draw left and
right “sub-rulers” (with smaller ticks)
void ruler(int left, int right, int tickHeight) {
if (not done yet) { /* pseudocode */
int middle = (left + right) 7/ 2;
draw_tick(middle, tickHeight);
ruler(left, middle, tickHeight /7 2);
ruler(middle, right, tickHeight / 2);

Maze example

e Suppose we are in a grid-like maze, and
need to find an exit

e At each step — can move one square in
either of four directions, any of which may
be blocked

e Q: how can we use recursion?

— Key is to find “smaller” problem

e A: assume we know how to get to an exit
from one of the neighboring squares!

Recursive maze exit finder

o findExit(x,y) returns true if exit is reachable from

maze coordinate (X,y)

boolean findExit(int x, int y) /*firsttry */

{ if (x,y is an exit)

return true; /* success! */

it (findExit(x+1, y) vreturn true;
else if (findExit(x-1, y) return true;
else if (findExit(x, y+1) return true;
else if (findExit(x, y-1) return true;
else return false; /*there’s no way out of here */ }

e Base case? Smaller case? General solution?
‘ OK ‘ ‘ Not really ‘ ‘ OK ‘

