Monday, July 6
First exam

Stacks

Top (next item)
First item popped
First item pushed
Last item popped

- LIFO data structure
- Last In, First Out
- All items except last item pushed are inaccessible
- So has very few possible operations:
- push, pop, peek, isEmpty, isFull, size, clear
- Lots of applications

Applying stacks

- Can be used to eliminate recursion
- Iteration and stacks instead of recursive calls
- For each "recursive" step
- Push critical data values
- While stack is not empty
- Pop values - like "return" from recursive call
- It's how the compiler does it
- Pushes "activation record" (a.k.a., "stack frame") for every function call, not just recursive ones
- In fact, idea applies to any nested structure
- Recursion is just a nesting of function calls
- What about nested parentheses in expressions?

Stack interface for general data

- Store Object data items (or <T>) void push(Object item); // push item on stack Object pop(); // pop top item from stack
- So can refer to anything - even other stacks!
- No need to reprogram stack for every application
- User works a little harder to use though
- Easiest to do with utility methods like:
void pushInt(int value, Stack stack);
// creates Integer object and pushes it on the stack
int popInt(Stack stack);
// pops from stack, casts, and gets int value from object

Checking balanced (), [], \{ \}

- Okay to nest, like $\left\{x /\left[y^{*}(a+b)\right]\right\}$
- Not okay to mismatch (or nest improperly)
- $(a /(x+y)$ is missing a right parenthesis
- ($x+[y-2)]$ is mismatched at [)
- Parentheses fully match if the following works:
for (each character in the expression) \{ if a left parenthesis - push it on the stack; if a right parenthesis pop matching left parenthesis from stack
\} stack is empty at the end

Postfix (and prefix) notation

- Also called "reverse Polish" - reversed form of notation devised by mathematician named Jan Łukasiewicz (so really lü-kä-sha-vech notation)
- Infix notation is: operand operator operand
- Like 4 + 22
- Requires parentheses sometimes: 5 * (2 + 19)
- Postfix form is: operand operand operator
- So 422 +
- No parentheses required: 5219 + *
- Prefix is operator operand operand: + 422

Evaluating postfix expressions

- Algorithm (start with an empty stack): while expression has tokens \{
if next token is operand /* e.g., number */ push it on the stack;
else /* next token should be an operator */
\{ pop two operands from stack; perform operation; push result of operation on stack; \}
\}
pop the result; /* should be only thing left on stack */

Postfix evaluation example

- Expression: $54+8$ *
- Step 1: push 5
- Step 2: push 4
- Step 3: pop 4, pop 5, add, push 9
- Step 4: push 8
- Step 5: pop 8, pop 9, multiply, push 72
- Step 6: pop 72 - the result
- A bad postfix expression is indicated by:
- More than one value on stack at end
- Less than two operands to pop when operator occurs

Evaluating infix expressions

- Simplest type: fully parenthesized
- e.g., ((($6+9) / 3) *(6-4))$
- Still need 2 stacks: 1 numbers, 1 operators while tokens available \{

```
if (number) push on number stack;
    if (operator) push on operator stack;
    if ( '(' ) do nothing;
    else { /* must be ')' */
        pop two numbers, and one operator; calculate; push result on number stack; \}
```

\} /* should be one number left on stack at end: the result */

Converting infix to postfix

- Operator precedence matters
- e.g., $3+(10-2) * 5 \rightarrow 3102-5$ * +
- Algorithm uses one stack; prints results
(alternatively, could append results to a string)
- For each token in the expression:
if (number) print it;
if ('(') push on stack;
if (')')
pop and print all operators until '(';
discard '(';
if (operator) /* more complicated - next slide */

Infix to postfix (cont.)

/* call current token the "new operator" */
while (stack is not empty) peek at top operator on stack;
if (top operator precedence >= new operator)
pop and print top operator;
else break out of while loop;
push new operator on stack after while;

- At end, pop and print all remaining operators. Done.

Notice: We don't know how a stack is implemented yet, but that doesn't seem to matter. Does it?

Abstraction is good!!!

Stack interface

interface Stack \{
boolean isFull(); // true iff stack is full boolean isEmpty (); // true iff stack is empty void clear(); // makes the stack empty void push(Object item); // inserts item // pre-condition: !isFull()
Object pop(); // removes/returns last item pushed // pre-condition: !isEmpty()
Object peek() ; // just returns last item pushed // pre-condition: !isEmpty()

Implementing stacks by arrays

- Idea is to keep track of "top" array index
- ArrayStack(int capacity) // constructor Object array[] = new Object[capacity];
int top $=0$; // some prefer -1 - differences unimportant
- isEmpty() - return top == 0;
- clear() - set top = 0;
- push(Object item) - array[top++] = item;
- pop() - return array[--top]; // notice pre-decrement
- peek() - return array[top-1]; // no decrement
- Very efficient, but stack is full when array is full
- isFull() - return top == array.length;
- Can use dynamic array, or even better - use ArrayList

A stack can adapt an ArrayList

- No need to keep track of top - let list do that
- ArrayListStack() // no capacity variable either ArrayList list = new ArrayList();
- isEmpty() - return list.isEmpty();
- clear() - list.clear();
- push(Object item) - list.add(item);
- pop() - return list.remove(list.size()-1);
- peek() - return list.get(list.size()-1);
- Never full, but slightly less efficient - method overhead
- isFull() - return false;
- Note: or with a LinkedList - usually top is first element

Notice what doesn't matter

- void method(Stack stack) \{ \}
- Is it an ArrayStack? ArrayListStack? Other?
- Use the same way no matter how implemented
- Implementation does affect efficiency - time and space requirements
- Also can affect usefulness (e.g., can get full or not)
- But implementation can be changed
- Without any changes to client code!
- Remember to recompile though

Stack operation complexity

- Implementing a stack with an array
- peek(), pop() - access last item (remove for pop)
- Complexity is $\mathrm{O}(1)$ - does not depend on n
- push(object) - add a last item
- $\mathrm{O}(1)$ if array is not full; otherwise $\mathrm{O}(\mathrm{n})$ to resize/copy
- Implementing with single-linked list
- peek ()$, \operatorname{pop}()$ - access first item - Why not last item?
- $\mathrm{O}(1)$ - but would be $\mathrm{O}(\mathrm{n})$ if "top" is last item instead
- push(object) - add a first item
- Also O(1)
- So same in terms of speed - but different space requirements, and different constants/effort

What is a recursive method?

- Ans: a method that calls itself (maybe indirectly)
- Standard first example - factorial method:

$$
\mathrm{n}!=\mathrm{n} *(\mathrm{n}-1) *(\mathrm{n}-2) * \ldots * 1 \quad(\text { for } \mathrm{n}>0)
$$

- Note recursive pattern:

$$
\mathrm{n}!=\mathrm{n} *(\mathrm{n}-1)!\quad(\text { for } \mathrm{n}>1, \text { and } 1!=1)
$$

- Translates immediately to Java:
static int factorial(int n) \{
if ($\mathrm{n}<=1$)
return 1;
else
return n * factorial(n-1);

Recursive solution essentials

- Always need a base case
- a.k.a. trivial case, or smallest case
- A way to stop; otherwise infinite recursion
- e.g., if ($n<=1$) in factorial method
- Recursive calls converge on base case
- i.e., problems get smaller with each recursion
- e.g., factorial(n-1)
- Solution must actually solve the problem!
- This part is most important, and the hardest to insure

Fibonacci - a good example, but a poor application
 - $\mathrm{fib}(\mathrm{n})=\mathrm{fib}(\mathrm{n}-2)+\mathrm{fib}(\mathrm{n}-1)$, $\mathrm{fib}(0)=\mathrm{fib}(1)=1$

- Note: general solution has two recursive calls
- Okay, but in this case, recursion is very inefficient! fib(5) calls fib(3), fib(3) calls fib(1),
fib(3) calls fib(2), fib(2) calls fib(0), fib(2) calls fib(1)
fib(5) calls fib(4), ...
- Count increases exponentially - 15 calls for fib(5), 987 calls for fib(15), 2,692,537 calls for fib(30), ...

fib(5) - call tree

- fib(5) and fib(4) once each, fib(3) twice
- fib(2) 3 times, fib(1) 5 times, fib(0) 3 times

Recursive Drawing Example

- Handy for some non-numerical problems too
- Drawing tick marks on a ruler:
- base case: draw nothing (tick too small)
- general case: draw middle tick, then draw left and right "sub-rulers" (with smaller ticks)
void ruler(int left, int right, int tickHeight) \{ if (not done yet) \{ /* pseudocode */ int middle = (left + right) / 2; draw_tick(middle, tickHeight); ruler(left, middle, tickHeight / 2); ruler(middle, right, tickHeight / 2);
\}
\}

Maze example

- Suppose we are in a grid-like maze, and need to find an exit
- At each step - can move one square in either of four directions, any of which may be blocked
- Q: how can we use recursion?
- Key is to find "smaller" problem
- A: assume we know how to get to an exit from one of the neighboring squares!

Recursive maze exit finder

- findExit(x,y) returns true if exit is reachable from maze coordinate (x, y)

```
boolean findExit(int x, int y) /* first try */
{ if ( x,y is an exit)
```

return true; /* success! */
if (findExit(x+1, y) return true;
else if (findExit(x-1, y) return true;
else if (findExit(x, y+1) return true;
else if (findExit(x, y-1) return true;
else return false; /* there's no way out of here */ \}

- Base case? Smaller case? General solution?

OK

Not really
OK

