
1

Maze exit finder (cont.)

Solution must lead to smaller problems
boolean find_exit(int x, int y) /* 2nd try */
{ if (we have been here before)

return false; /* don’t try same spot again */
if (x,y is an exit)

return true; /* success! */
/* rest as before */

So need a way to remember where we’ve been
– e.g., mark square upon entering find_exit
– Q: is it ever necessary to remove the mark?

Choosing maze data structures
How to represent a maze square?
– Okay, a class, but what data are stored?

Ways to know if exit or not, if has been visited yet or not
Maybe ways to know about neighboring squares

– How about some helper methods?
e.g., isExit(), isMarked(), hasNeighbor(direction), …

How to represent the whole maze?
– Suggest: array of references to maze squares
– Any other ways?

Towers of Hanoi (demo)

Problem: move n disks from peg a to peg c, using
peg b to hold disks temporarily; keep small on top
Recursive solution: method with params n, a, b, c
– Base case: just one disk – trivial:

If n is 1, move 1 disk from a to c
– General case: assume a method that can move a tower

of height n-1. This method!!!
Move top n-1 disks from a to b, using c for holding purposes
Move the bottom disk from a to c
Move all n-1 disks on b to c, using a for holding purposes

Iterative solution much more difficult in this case

Decimal (value) to binary (string)
/**
* Returns a String representation of the binary equivalent
* of a specified integer. The worstTime(n) is O(log n).
* @param n – an int in decimal notation.
* @return the binary equivalent of n, as a String
* @throws IllegalArgumentException, if n is less than 0
*/ // (From Collins text’s instructor resources)
public static String getBinary (int n) {

if (n < 0)
throw new IllegalArgumentException();

if (n <= 1)
return Integer.toString (n);

return getBinary (n / 2) + Integer.toString (n % 2);
}

Demo

Eliminating recursion

Can always simulate recursion by explicit stack
– Use iteration instead of recursion

Instead of recursive call: push key values onto stack
– e.g., maze finder – push coordinates (x, y)

Instead of return: pop values from stack
– e.g., back to square (x, y) in maze finder

Sometimes an easy non-recursive translation
without a stack – especially if “tail recursion”
– e.g, factorial, fibonacci, ruler tick marks, …
– Much harder for maze and Hanoi examples

Queues

FIFO data structure – First In, First Out
Typical operations similar to stacks
– enqueue (an item at rear of queue)
– dequeue (item at front of queue)
– peek (at front item)
– isEmpty, isFull, size, clear

Rear Front

1st enqueued
1st dequeued

last enqueued
last dequeued

2

Some queue applications
Many operating system applications
– Time-sharing systems rely on process queues

Often separate queues for high priority jobs that take little
time, and low priority jobs that require more time

– Printer queues and spoolers
Printer has its own queue with bounded capacity
Spoolers queue up print jobs on disk, waiting for print queue

– Buffers – coordinate processes with varying speeds
Simulation experiments
– Models of queues at traffic signals, in banks, etc.,

used to “see what happens” under various conditions

Applying a queue – palindrome
Palindrome - same forward and backward
– e.g., Abba, and “Able was I ere I saw Elba.”

Lots of ways to solve, including recursive
Can use a queue and a stack together
– Fill a queue and a stack with copies of letters (only)
– Then empty both together, verifying equality

Reminder – we’re using an abstraction
– We still don’t know how queues are implemented!!!

To use them, it does not matter!
– Abstraction is Good!

Queue interface
e.g., java.util.Queue:

public interface Queue<E> extends Collection<E> {

boolean offer(E o); // enqueue

E poll(); // dequeue (null if empty)

E remove(); // dequeue (exception if empty)

E peek(); // peek (null if empty)

E element(); // peek (exception if empty)

}

All Known Implementing Classes:
– AbstractQueue, ArrayBlockingQueue, ConcurrentLinkedQueue,

DelayQueue, LinkedBlockingQueue, LinkedList, PriorityBlockingQueue,
PriorityQueue, SynchronousQueue

Implementing queues
Easy to do with a list (e.g., ArrayList):
– Mostly same as stack implementation
– Enqueue – add to end – list.add(item);

– Then to dequeue and peek: refer to first item
e.g., to dequeue – list.remove(0);

Array implementation is trickier:
– Must keep track of front and rear indices
– Increment front/rear using modulus arithmetic

Indices cycle past last index to first again – idea is to reuse
the beginning of the array after dequeues

See demos in ~mikec/cs20/demo03/queue/ at CSIL

Queue operation complexity
Implementing a queue with an array
– enqueue(object) – add to end and increment tail index

O(1) if array is not full; otherwise O(n) to resize/copy
– dequeue() – remove front and increment front index

O(1) – does not depend on size of queue

Implementing with single-linked list
– enqueue(object) – add a last item

O(n) – for single-linked list with just a first pointer
But O(1) if also have a pointer to last element – an easy fix

– dequeue() – remove first item
O(1) – point first at first.next – not affected by n size

– Why not enqueue first and dequeue last?

What are iterators?
Objects for iterating over elements of structure
e.g., java.util.Iterator:
interface Iterator<E> {

boolean hasNext(); // true if more objects
E next(); // return object and increment

// throws NoSuchElementException if !hasNext()
void remove(); // optional – and potentially dangerous

// may throw UnsupportedOperationException
}

Handy to implement as inner class of structure
– Has reference to all data structure fields/methods
– Could be anonymous/local to getIterator method

3

Why iterators?
Provide ability to traverse list (or other structure)
without direct access to nodes
Easy to use – e.g., print list with while loop:
Iterator it = list.getIterator();
while (it.hasNext())

print(it.next());

Even shorter with a for loop:
for(Iterator it=list.getIterator(); it.hasNext();)

print(it.next()); // the increment step happens here
– And simpler with enhanced for loop:

for (DataType d : list) print(d);

Implementing linked lists
e.g., a method to insert a new second node –
imagine list now is (DUS→ORD→SAN),

want (DUS→BRU→ORD→SAN)
or now (DUS), want (DUS→BRU)
or now (), want (BRU)

– Any other special cases?
A strategy:

create new node to hold BRU – call it n;
if empty list – set first to n; return;
else set n.next to first.next;

set first.next to n; return;

Code to insert new 2nd node
Assume instance variable for first node:
ListNode first; // refers to first node or null if list is empty

So use that fact to write “is empty” method:
boolean isEmpty() { return first == null; }

Then easy to code insert 2nd node method:
void insertNewSecondNode(Object data){

ListNode n = new ListNode(); // null data and next
n.data = data;
if (isEmpty()) first = n; // leave next null
else {

n.next = first.next;
first.next = n;

}
}

Searching for a node
Idea: return reference to the node that contains
particular info, or return null if the info is not in
the list (Note: probably a private method – returns node reference)

Strategy:
declare local node reference - call it n;
point n at first node in list;
while (n points to non-null node) {

if (n’s referent has the info)
return n;

else advance n to n.next;
}
return null if get this far;

List traversal without iterators
Search strategy typifies list-hopping activity:

start by referencing first node;
process that node;
change reference to that node’s next link;
keep going until success (e.g., found info), or

until end (i.e., reference is null);

– Same idea works for lots of list operations
e.g., print list – immediately applicable
To append (add last), first must link-hop to last node
To remove a node, must link-hop to node that precedes it

But also usually consider potential special cases
– e.g., first node, last node, empty list, just one node, …

