
1

Monday, July 20

Second exam

Strategy to delete last node
declare 2 node references: current, previous;

/* then handle special cases first */
just return (i.e., do nothing) if list is empty;
set first to null and return if just one node;

/* otherwise traverse list to find second-to-last node */
point previous at first node;
point current at previous.next;
while (current.next does not refer to null)

advance both previous and current references;
/* finally, set link of second-to-last */

set previous.next = null; // old last node is garbage collected
/* Done. */

Efficiency of list functions
If singly-linked list:
– Insert/delete first – O(1)
– Insert/delete last/middle – O(n)
– Find value – O(n)
– Retrieve/set ith item – O(n)

Compare to array:
– Insert/delete first/middle, and find value – O(n)
– Insert/delete last – O(1) – unless resize, then O(n)
– Retrieve/set ith item – O(1) – the array’s strong point

Improved lists

Some improvements can increase usefulness
– e.g., circular list to solve Josephus problem
– e.g., generalized lists – actually are lists of lists

Some improvements aim to speed up operations
– e.g., maintain a separate reference to last item

Now O(1) complexity to access last
Still O(n) to delete last – Why?

– Double-linked list is even better (next slide)

Trade-offs – the usual: speed ↔ space ↔ effort

Double-linked lists

A Node – has links to next and previous nodes
A List – has references to both first and last nodes
More work to implement most operations though
– Twice as many links to worry about for all cases
– More special cases to consider – 2nd and penultimate

But easy to traverse backwards
– Also O(1) to delete last, easy to insert before a node, …

Sentinel nodes – a trick to eliminate special cases
– First and last nodes hidden from client – never empty!
– See java.util.LinkedList.java

Implementing priority queues

Way 1 – unsorted array (or ArrayList / Vector)
– insert – easy: add item as last array element
– remove – harder: search for highest priority item, and

move last element to emptied slot
– Insert is O(1), remove is O(n)

Way 2 – sorted list
– insert – some work: search for right position – O(n)
– remove – easy: remove the first item – O(1)

Way 3 – a type of tree called a heap – later

2

Trees – some terminology

R

S T

WVUX

Y Z

root

leaf

internal
node

child of R

parent
of Y, Z

descendants of S

More tree terms and concepts
Every tree has exactly one root
– Root is null for an empty tree
– But each node really is the root of its own subtree

Starting from the root, there is exactly one path
to each node (would be a graph if could be more than one path)

The depth of a node is the length of the path from
the root to this node (a.k.a., “level”)
– Depth of the root is 0
– Path length is the number of edges between two nodes

The height of a tree equals the greatest node
depth in the tree (the height of an empty tree is -1)

Basic tree operations

Some operations are common to all trees
– Height of tree, count items, clear items, isEmpty
– Insert item, find item, delete item, depth of item
– Also ways to visit items (traverse) in various orders

Rules for some operations vary by tree type
– Some trees have ordering principles
– Some trees have structure principles
– Some trees cannot store duplicates

Such a tree qualifies as a Set

Tree ADTs vary widely
Behaviors depend on the type of tree
Efficiency of operations also varies
– Depends on rules, and often on tree structure

Structures vary too
– Shape may be fixed, or allowed to vary only slightly
– Or shape can change dramatically by inserting,

deleting, or reorganizing nodes
Implementation strategies differ by type of tree
– For CS 20 – learn to implement 2 types of binary

trees: heaps, and binary search trees

ADTs – depends on tree type
e.g., Heap
– Limited operations – one insert, one remove

But these are very efficient
– Mostly used to implement priority queues

Also can be used to sort – basis of HeapSort algorithm
e.g., Binary Search Tree
– More flexible remove operation (usually) – any item
– Also flexible traverse operations – various orders
– But no duplicate items allowed in tree – i.e., is a set
– Main advantage is quick searching – hence the name

Are plenty of tree applications
Organizing files – directory structures are trees
Storing strategies for computer game-players
– What can happen if …?

Given each of those outcomes, what can happen next?
– And so on, …

Representing decision trees in general
– Binary tree branches usually if-yes … and if-no …

Another way to represent expressions
– Also binary trees – internal nodes are operations,

leaves are operands
And many more

3

Binary trees
Each node can have 0, 1, or 2 children only
i.e., a binary tree node is a subtree that is either
empty, or has left and right subtrees
– Notice this is a recursive definition
– Concept: a leaf’s “children” are two empty subtrees

Half (+1) of all nodes in full binary tree are leaves
– All nodes except leaves have 2 non-empty subtrees
– Exactly 2k nodes at each depth k, ∀k < (leaf level)

A complete binary tree satisfies two conditions
– Is full except for leaf level
– All leaves are stored as far to the left as possible

Heaps
Complete binary trees, whose items must
be comparable and stored in heap order
– Heap order – if a Max-Heap, a node’s

information is never less than the information
of one of its children (opposite for Min-Heap)

91

77 46

1169 3

91

77 46

1169 3

52

77 46

1169 3

OK

! complete

! order

Inserting an item in a heap
insertHeap algorithm keeps complete / in order:
put item in first available slot; /*keep complete*/
while (new info > parent info) /*assuming Max-Heap*/

swap info with parent; /* “reheapify” */

91

77 46

1169 40 30

40 15 3

before
insert(80) 91

77 46

1169 40 30

40 15 3

step 1

80

91

46

1169

40

30

40 15 3

2 steps
later: done

80

77

Implementing a heap
Convenient to implement as an array
– Root: [1]; root children: [2,3]; their children: [4:7] …
– Works because of binary completeness requirement –

tree is full at all depths except leaves
e.g., insertHeap algorithm
– Step 1: put item at end of array;

O(1) complexity, unless array is filled up
– Step 2 until done: reheapify by array indexing;

Have parent of array[i] at array[i/2], ∀ i>1
O(log n) complexity to reheapify this way

So complexity of insertHeap is O(log n) overall

Using a heap as a priority queue

To remove highest priority item from heap:
remove root; / * O(1) complexity */
heapify in reverse; / * O(log n) complexity */
– So overall complexity is O(log n)

Meaning O(log n) for both insert and delete
Compare to other priority queue strategies
– Sorted list: insert – O(n); remove – O(1)
– Unsorted array: insert – O(1); remove – O(n)

Choose heap strategy if n is expected to be large

Representing as linked nodes
Most trees are not as “regular” as heaps
– So array representation wastes space, and does not

accommodate changes well
Binary tree node:
class TreeNode {

Object item; /* a data item to store in the tree */
TreeNode left; /* one child */
TreeNode right; /* other child */

}
– Like lists, except each node links to two other nodes

Much more flexible than array representation

4

Traversing trees

Example: an expression tree (a type of “parse tree” built
by advanced recursion techniques) representing this infix
expression: 4 + 7 * 11

+

4 *

7 11

Infix is in-order traversal
– Left subtree node right subtree

But can traverse in other orders
– Pre-order: node left right,

gives prefix notation: + 4 * 7 11
– Post-order: left right node,

gives postfix notation: 4 7 11 * +

Binary tree traversals
Naturally recursive functions
– Order of recursive calls determines traversal order

Remember recursive ruler tick-mark drawing?

e.g., method to “visit” nodes in-order:
void inOrderTraverse(TreeNode n) {

if (n != NULL) {

inOrderTraverse(n.left); /* A */
visit(n); /* B */
inOrderTraverse(n.right); /* C */

}
}

Pre-order: B A C; Post-order: A C B

Binary search trees – BSTs
Order rule for BSTs – say
tree node is n:
– Info in left subtree of n is

less than info in n
– Info in right subtree of n is

greater than info in n
Tree may not contain any
duplicate info, and items
must be comparable
No rule for tree shape (except
must be binary)

46

11 77

693 91

Searching a BST iteratively
e.g., return reference to node with “key” item:
TreeNode n = root; /* start at root node */
while(n != null && n.item != key)
/* iterate until no more branches or item is found */

if (key < n.item) /* search left subtree */
n = n.left;

else /* search right subtree */
n = n.right;

return n; /* either null, or node with key info */

Searching a BST recursively
External method (i.e., not a TreeNode method):
TreeNode findNode(Comparable key, TreeNode n)
{ if (n is null || n.item equals key)

return n; /* works for both base cases */
else if (key is less than n.item)

return findNode(key, n.left);
else return findNode(key, n.right);

}

Same complexity as iterative version
– Notice: each iteration eliminates ½ remaining nodes
– Similar result applies to many binary tree operations

