BST search efficiency
e Q: what determines the average time to find a
value in a tree containing n nodes?

e A: average path length from root to nodes.
— Q: how long is that?

— Path lengths (“depths™): 1 (root) at depth 0, 2 at depth
1, 4 at depth 2, 8 at depth 3, ..., log n levels in full tree

e But ...
— ... tree must be balanced!
— Or complexity can reach O(n)

9

Insert to a BST

e Same general strategy as find operation:
if (info < current node) insert to left;
else if (info > current node) insert to right;
else — duplicate info — abort insert;

— Need a way to signal “unsuccessful” insert

e Project 3 ADT - insert method returns a boolean value — true
if successful, false otherwise

e Use either iterative or recursive approach
e 2 potential base cases for recursive version:
— Already in tree — so return false; do not insert again
— An empty tree where it should go — so set parent’s link

Insertion order affects the tree?

e Try inserting these values in this order:
6, 4, 9, 3, 11,

e Q: does the insertion order matter?
e A: yes!
— Proof - insert same values in this order:
3, 4,6, 7,9, 11
e Moral: sorted order is bad, random is good.

— Note: cheaper to insert randomly, than try to
set up self-balancing trees (see AVL trees)

Deleting a node (outline)

e First step: find node (keep track of parent)
e Rest depends on how many children it has
— No children: no problem — just delete it (by setting
appropriate parent link to null)

— One child: still easy — just move that child “up” the tree
(set parent link to that child)

— Two children: more difficult — strategy is to replace the
node with (either) largest value in its left subtree (or
smallest in right subtree) — may lead to one more delete

o Generally, deleteNode method will return a node
pointer — to replace the child pointer of parent

deleteNode algorithm

e Pseudocode for an external method:
TreeNode deleteNode(Comparable item,

TreeNode node) {
if (itemis less than node’s item)

/1 delete from left subtree (unless there is no left subtree)
Il return result of delete (or null 1 if no left subtree)

else if (itemisgreater than node’s item)
/I same as above, but substitute right subtree

else //node contains the item to be deleted
Il return result of delete this node ;

Actually removing a node

e More pseudocode (with strategic real code mixed in):
TreeNode deleteThis(TreeNode node) {

if (node isaleaf)
/I 'return a null result

else if (node hasjustone child)
/I return that child

else { //node has two children
/I find “greatest” node in left subtree
1/ copy item of greatest node in left subtree to node . i tem
Il deleteNode(item, node.left);
return node;

}

greatestNode, & other utilities

e Greatest node in BST is all the way to the right

— So itis easy to find with recursion:
TreeNode greatestNode(TreeNode node) {
if (node.right == null)
return node;
else return greatestNode(node.right);

¥
e Use recursion to calculate height too

— Atany node: 1 + maximum(left height, right height)
e To count: “traverse” the nodes — add 1 at each visit
e Other methods from Project 3, part 2:

— Think recursively!

Sorting

e Probably the most expensive common operation
e Problem: arrange a[0. .n-1] by some ordering
- e.g., inascending order: a[i-1]<=a[i], O<i<n
e Two general types of strategies
— Comparison-based sorting — includes most strategies
o Apply to any comparable data — (key, info) pairs
o Lots of simple, inefficient algorithms
e Some not-so-simple, but more efficient algorithms
— Address calculation sorting — rarely used in practice
o Must be tailored to fit the data — not all data are suitable

Selection sort

largest

[] ! [[I
sorted

e |dea: build sorted sequence at end of array
e At each step:
— Find largest value in not-yet-sorted portion

— Exchange this value with the one at end of unsorted
portion (now beginning of sorted portion)

o Complexity is 0(n2)— but simple to program
— Also - best way to find ki largest, or top k values

Heap sort

e Another priority queue sorting algorithm

— Note about selection sort: unsorted part of array is like
a priority queue — remove greatest value at each step

— Also recall that heaps make faster priority queues
e |dea: create heap out of unsorted portion, then
remove one at a time and put in sorted portion
e Complexity iso(n log n)
— 0(n) to create heap + 0(n log n) to remove/reheapify
e Note proof: 0(n log n) is the fastest possible
class of any comparison-based sorting algorithm
— But constants do matter — so some are faster than others

Insertion sort

e Generally “better” than other simple algorithms
e Inserts one element into sorted part of array
— Must move other elements to make room for it

current
1] +++, | []
e Complexity is 0(n?) (code)

— But runs faster than selection sort and others in class
— Really quick on nearly sorted array
e Often used to supplement more sophisticated sorts

Divide & conquer strategies

o |dea; (1) divide array in two; (2? sort each part; (3)
combineé two parts to overall solution
e e.g., mergeSort
if (array is big enough to continue splitting) >
divide array into left half and right half;
mergeSort(left half);
mergeSort(right half);
merge(left half and right half together);
else > sort small array in a simpler way
— Need 2n space, and 0(n) step to merge two halves
— Overall complexity is 0(n log n)
— The best sort for large files (especially if too big for memory)

e Usedin java.util.Arrays.sort(Object[] a)
— Collections.sort(a list) copies to array, uses Arrays.sort

Quick sort

e Invented in 1960 by C.A.R. Hoare
— Studied extensively by many people since
— Probably used more than any other sorting algorithm

e Basic (recursive) quicksort algorithm:
if (there is something to sort)
{ partition array;
sort left part;
sort right part; }
— All the work is done by partition function
— So there is no need to merge anything at the end

Partitioning (for quickSort)

e Arrange so elements in the two sub-arrays are on correct
side of a pivot element

— Also means pivot element ends up in its final position
pivot
[all <= pivot [l all >= pivot |

e Done by performing two series of “scans”
scan from (i = left) until a[i] >= pivot;
scan from (J = right) until a[j] <= pivot;
swap a[i] and a[j], and continue both scans;

stop scanning when i >= j; (code)

Quick sort (cont.)

e Complexity iso(n log n) on average
— Fastest comparison-based sorting algorithm
— But overkill, and not-so-fast with small arrays
—Um ... what about a small partition?!

— One optimization applies insertion sort for partitions
smaller than than 7 elements

e Also worst case is 0(n2)!
— Depends on initial ordering and choice of pivot
e Used in Arrays.sort(primitive array)

A table ADT (a.k.a. a Dictionary)

interface Table {
/I Put information in the table, and a unique key to identify it:
boolean put(Comparable key, Object info);
/I Get information from the table, according to the key value:
Object get(Comparable key);
/I Update information that is already in the table:
boolean update(Comparable key, Object newlnfo);
/I Remove information (and associated key) from the table:
boolean remove(Comparable key);
/I Above methods return false if unsuccessful (except get returns null)

/1 Print all information in table, in the order of the keys:
void printAll();

Table implementation options

e Many possibilities — depends on application
— And how much trouble efficiency is worth
e Option 1: use a BST
— To put: insertTree using key for ordering
— To update: deleteTree, then insertTree
— To printAll: use in-order traversal
e Option 2: sorted array with binary searching
e Option 3: implement as a “hash table”
— Hashing - later

Recursive binary searching

e Start with sorted array of items: a[0..n-1]

public class Item implements Comparable<ltem> {.}
e Binary searching algorithm is naturally recursive:
int bsearch(ltem key, Item a[], int left, int right) {

I/ first call is for 1eft=0, and right=n-1

if (left > right) return -1; // unsuccessful search

int middle = (left + right) / 2; //location of middle item

int comp = key.compareTo(a[middle]);

if (comp == 0) return middle;// success

if (comp > 0) // otherwise search one half or the other

return bsearch(key, a, middle+l, right);
else return bsearch(key, a, left, middle-1);

Iterative binary searching

int bsearch(ltem key, Item a[]) {

int low = 0, high = a.length-1, middle;

while (low <= high) {
middle = (low + high) 7/ 2;
int comp = key.compareTo(a[middle]);
if (comp == 0) return middle; //success
if (comp > 0) low = middle + 1;
else high = middle — 1;

return -1; //unsuccessful search
b3
e Both versions are same complexity class (next slide)

— Interpolation search, by the way, is in a faster class
e Trick is to calculate middle more intelligently

Complexity of binary search

e Say array has 15 elements, k; - -k;5: a[0. .14]
— If key is at kg (a[7]) then found by 1 comparison
— If key is at k, or k,,, takes 3 comparisons ...

e i.e, it’sjust like searching a BST

e Problem size is halved
at each step

— So complexity class is
Oo(log n)
e Interpolation search
reduces more quickly
— Classiso(log log n)

Hashing ideas and concepts

e Idea: transform arbitrary key domain (e.g.,
strings) into “dense integer range”
— Then use result as index to table
— int index = hash(key); //transform key to int
e Collisions: hash(k1l)==hash(k2), k1 1= k2
— Usually impossible to avoid (“perfect hashing” rare)
— Therefore, must have a way to handle collisions

e e.g., if using “open addressing” techniques -
while (occupied(index)) index = probe(key);

e Concept: insertion/searching is quick — but only
until the table starts to get filled up
— Then collisions start happening too often!

Implementing a hash table

e Constructor allocates memory for array of items,
and initializes all items to “empty” key
— size is size of array
— n is the number of items in the table
— Load factorisn 7 size
e put method uses hash(key) (and probe(key)if open
address hashing) to find empty slot for new item
— May be necessary to resize array
e If so, also necessary to rehash existing items
o |f open address hashing, resize when load factor > 50%

Open address hashing

e get & update methods use hash(key) and
probe(key) In exact same sequence as put
— To find existing info where it was put
e remove is more complicated
— Cannot just remove an item — future probes for get
and update might terminate prematurely at empty slot
e Common trick is to have “deleted” key
— Problem with that is table can seem full prematurely
o Inefficient alternative rehashes all items when any removed
e Note: to printAll in key order — must sort first
— So0(n log n) at best!

Hash functions

e Goal: uniform distribution of keys
— Means each index of table is equally likely
— Important for reducing collisions
e Common approach is a restricted transformation
— Step 1 - transform key to large integer
— Step 2 — restrict integer to 0...size-1
e Usually done with modulus operator - %
e Lots of variations — partly depends on key type
— General observation: hard to find a good hash function
— Note: should be “cheap” to compute too - e.g.,
division is slower on most CPUs than addition

Resolving collisions

e Simplest open address approach is linear probing

— If (index = hash(key)) is not empty, try index+1,
then index+2, ..., until empty slot
o Note: searching for first “open address”

— Leads to “primary clusters” — collisions bunch up
e Quadratic probing — vary probe, like 1, 3, 6, ...
— Leads to “secondary clusters” but not as quickly
e Double hashing — probe (key) varies by key
— Best open addressing approach for avoiding clusters
e Or completely different approach — “chaining”

Chaining

e Constructor allocates memory for array of Lists, and
creates an empty list for each element of the array
e put method uses hash(key) and appends to end of list at
that index of array
— Still should resize when load factor approaches 80%
e Clustering is not a problem, but long lists slow performance
remove method is easier now — just delete from list
e But lots more overhead than open addressing
— Must store node links as well as key and info
— Use list method calls instead of direct array access

Compare 3 table implementations

Table operation | Hash table BST Sorted array
create (new table) o) o) o(n)

get, update o) 0(log n) 0(log n)
put o 0(llog n) o
remove o) 0(log n) o
printAll o(n log n) o(n) on)

e Conclusion: choice depends on table purpose and size of n
e Q. Ever want to use a sorted array?
— A. It depends!

