BST search efficiency

- Q: what determines the average time to find a value in a tree containing n nodes?
- A: average path length from root to nodes.
 - Q: how long is that?
 - Path lengths ("depths"): 1 (root) at depth 0, 2 at depth
 1, 4 at depth 2, 8 at depth 3, ..., log *n* levels in full tree

$$average = \frac{1}{n} \cdot \sum_{i=0}^{\log n} 2^i \cdot i \approx \log n$$

• But ...

- … tree must be balanced!
- Or complexity can reach O(n)

Insert to a BST

- Same general strategy as find operation: if (info < current node) insert to left; else if (info > current node) insert to right; else - duplicate info - abort insert;
 - Need a way to signal "unsuccessful" insert
 - Project 3 ADT insert method returns a boolean value true if successful, false otherwise
- Use either iterative or recursive approach
- 2 potential base cases for recursive version:
 - Already in tree so return false; do not insert again
 - An empty tree where it should go so set parent's link

Insertion order affects the tree?

- Try inserting these values in this order:
 6, 4, 9, 3, 11, 7
- Q: does the insertion order matter?
- A: yes!
 - Proof insert same values in this order:
 - 3, 4, 6, 7, 9, 11

• Moral: sorted order is bad, random is good.

 Note: cheaper to insert randomly, than try to set up self-balancing trees (see AVL trees)

Deleting a node (outline)

- First step: find node (keep track of parent)
- Rest depends on how many children it has
 - No children: no problem just delete it (by setting appropriate parent link to null)
 - One child: still easy just move that child "up" the tree (set parent link to that child)
 - Two children: more difficult strategy is to replace the node with (either) largest value in its left subtree (or smallest in right subtree) may lead to one more delete
- Generally, deleteNode method will return a node pointer to replace the child pointer of parent

deleteNode algorithm

 Pseudocode for an external method: TreeNode deleteNode(Comparable item, TreeNode node) { if (item is less than node's item) // delete from left subtree (unless there is no left subtree) // return result of delete (or null if no left subtree)

else if (item is greater than node's item)
// same as above, but substitute right subtree

else // node contains the item to be deleted
 // return result of delete this node ;

Actually removing a node

• More pseudocode (with strategic real code mixed in): TreeNode deleteThis(TreeNode node) {

if (node is a leaf)
 // return a null result

else if (node has just one child)
 // return that child

else { // node has two children
 // find "greatest" node in left subtree
 // copy item of greatest node in left subtree to node.item
 // deleteNode(item, node.left);
 return node;

greatestNode, & other utilities

Greatest node in BST is all the way to the right

 So it is easy to find with recursion:
 TreeNode greatestNode(TreeNode node) {
 if (node.right == null)
 return node;

else return greatestNode(node.right);

• Use recursion to calculate height too

- At any node: 1 + maximum(left height, right height)

- To count: "traverse" the nodes add 1 at each visit
- Other methods from Project 3, part 2:

– Think recursively!

Sorting

- Probably *the* most expensive common operation
- Problem: arrange a[0..n-1] by some ordering
 - e.g., in ascending order: a[i-1]<=a[i], 0<i<n</pre>
- Two general types of strategies
 - Comparison-based sorting includes most strategies
 - Apply to any comparable data (key, info) pairs
 - Lots of simple, inefficient algorithms
 - Some not-so-simple, but more efficient algorithms
 - Address calculation sorting rarely used in practice
 - Must be tailored to fit the data not all data are suitable

Selection sort

Heap sort

• Another priority queue sorting algorithm

- Note about selection sort: unsorted part of array is like a priority queue – remove greatest value at each step
- Also recall that heaps make faster priority queues
- Idea: create heap out of unsorted portion, then remove one at a time and put in sorted portion
- Complexity is O(n log n)
 - O(n) to create heap + O(n log n) to remove/reheapify
- Note proof: O(n log n) is the fastest possible class of any *comparison-based* sorting algorithm
 - But constants do matter so some are faster than others

Insertion sort

- Generally "better" than other simple algorithms
- Inserts one element into sorted part of array
 - Must move other elements to make room for it

• Complexity is O(n²)

(<u>code</u>)

- But runs faster than selection sort and others in class
- Really quick on *nearly sorted* array
- Often used to supplement more sophisticated sorts

Divide & conquer strategies

- Idea: (1) divide array in two; (2) sort each part; (3) combine two parts to overall solution
- e.g., mergeSort
 - if (array is big enough to continue splitting) →
 divide array into left half and right half;
 mergeSort(left half);
 - mergeSort(right half);
 - merge(left half and right half together);
 - else \rightarrow sort small array in a simpler way
 - Need 2n space, and O(n) step to merge two halves
 - Overall complexity is O(n log n)
 - The best sort for large files (especially if too big for memory)
- Used in java.util.Arrays.sort(Object[] a)
 - Collections.sort(*a list*) copies to array, uses Arrays.sort

Quick sort

- - So there is no need to merge anything at the end

Partitioning (for quickSort)

- Arrange so elements in the two sub-arrays are on correct side of a pivot element
 - Also means pivot element ends up in its final position

pivot		
all <= pivot	all >= pivot	

Done by performing two series of "scans"
 scan from (i = left) until a[i] >= pivot;
 scan from (j = right) until a[j] <= pivot;
 swap a[i] and a[j], and continue both scans;
 stop scanning when i >= j; (code)

Quick sort (cont.)

- Complexity is O(n log n) on average
 - Fastest comparison-based sorting algorithm
 - But overkill, and not-so-fast with small arrays
 - Um … what about a small partition?!
 - One optimization applies insertion sort for partitions smaller than than 7 elements
- Also worst case is $O(n^2)$!
 - Depends on initial ordering and choice of pivot
- Used in <u>Arrays</u>.sort(*primitive array*)

A table ADT (a.k.a. a Dictionary)

interface Table {

- // Put information in the table, and a unique key to identify it: boolean put(Comparable key, Object info); // Get information from the table, according to the key value: Object get(Comparable key);
- // Update information that is already in the table:
- boolean update(Comparable key, Object newInfo);
- // Remove information (and associated key) from the table:
- boolean remove(Comparable key);
- // Above methods return false if unsuccessful (except get returns null)
 // Print all information in table, in the order of the keys:
 void printAll();

Table implementation options

- Many possibilities depends on application
 - And how much trouble efficiency is worth
- Option 1: use a BST
 - To put: insertTree using key for ordering
 - To update: deleteTree, then insertTree
 - To printAll: use in-order traversal
- Option 2: sorted array with binary searching
- Option 3: implement as a "hash table"
 - Hashing later

Recursive binary searching

• Start with *sorted* array of items: a[0..n-1] public class Item implements Comparable<Item> {...} • Binary searching algorithm is naturally recursive: int bsearch(Item key, Item a[], int left, int right) { // first call is for left=0, and right=n-1 if (left > right) return -1; // unsuccessful search int middle = (left + right) / 2; // location of middle item int comp = key.compareTo(a[middle]); if (comp == 0) return middle;// success if (comp > 0) // otherwise search one half or the other return bsearch(key, a, middle+1, right); else return bsearch(key, a, left, middle-1);

Iterative binary searching

```
int bsearch(Item key, Item a[]) {
    int low = 0, high = a.length-1, middle;
    while (low <= high) {
        middle = (low + high) / 2;
        int comp = key.compareTo(a[middle]);
        if (comp == 0) return middle; // success
        if (comp > 0) low = middle + 1;
        else high = middle - 1;
    }
    return -1; // unsuccessful search
}
```

Both versions are same complexity class (next slide)
 Interpolation search, by the way, is in a faster class

• Trick is to calculate middle more intelligently

Complexity of binary search

• Say array has 15 elements, $k_1 \dots k_{15}$: a[0..14]

- If key is at k_8 (a[7]) then found by 1 comparison
- If key is at k_4 or k_{12} , takes 3 comparisons ...
- i.e., it's just like searching a BST

- Problem size is halved at each step
 - So complexity class is
 O(log n)
- Interpolation search reduces more quickly
 - Class is O(log log n)

Hashing ideas and concepts

- Idea: transform arbitrary key domain (e.g., strings) into "dense integer range"
 - Then use result as index to table
 - int index = hash(key); // transform key to int
- Collisions: hash(k1)==hash(k2), k1 != k2
 - Usually impossible to avoid ("perfect hashing" rare)
 - Therefore, must have a way to handle collisions
 - e.g., if using "open addressing" techniques while (occupied(index)) index = probe(key);
- Concept: insertion/searching is quick but only until the table starts to get filled up

– Then collisions start happening too often!

Implementing a hash table

- Constructor allocates memory for array of items, and initializes all items to "empty" key
 - size is size of array
 - n is the number of items in the table
 - Load factor is n / size
- put method uses hash(key) (and probe(key) if open address hashing) to find empty slot for new item
 - May be necessary to *resize* array
 - If so, also necessary to *rehash* existing items
 - If open address hashing, resize when load factor > 50%

Open address hashing

- get & update methods use hash(key) and probe(key) in *exact same sequence* as put
 - To find existing info where it was put
- remove is more complicated
 - Cannot just remove an item future probes for get and update might terminate prematurely at empty slot
 - Common trick is to have "deleted" key
 - Problem with that is table can seem full prematurely
 - Inefficient alternative rehashes all items when any removed
- Note: to printAll in key order must sort first
 So O(n log n) at best!

Hash functions

- Goal: uniform distribution of keys
 - Means each index of table is equally likely
 - Important for reducing collisions
- Common approach is a *restricted transformation*
 - Step 1 transform key to *large* integer
 - Step 2 restrict integer to 0...size-1
 - Usually done with modulus operator %
- Lots of variations partly depends on key type
 - General observation: hard to find a good hash function
 - Note: should be "cheap" to compute too e.g., division is slower on most CPUs than addition

Resolving collisions

• Simplest open address approach is linear probing - If (index = hash(key)) is not empty, try index+1, then index+2, ..., until empty slot • Note: searching for first "open address" – Leads to "primary clusters" – collisions bunch up • Quadratic probing – vary probe, like 1, 3, 6, ... - Leads to "secondary clusters" but not as quickly • Double hashing – probe(key) varies by key - Best open addressing approach for avoiding clusters • Or completely different approach – "chaining"

Chaining

- Constructor allocates memory for array of Lists, and creates an empty list for each element of the array
- put method uses hash(key) and appends to end of list at that index of array
 - Still should resize when load factor approaches 80%
 - Clustering is not a problem, but long lists slow performance
- remove method is easier now just delete from list
- But lots more overhead than open addressing
 - Must store node links as well as key and info
 - Use list method calls instead of direct array access

Compare 3 table implementations

Table operation	<u>Hash table</u>	<u>BST</u>	Sorted array
create (new table)	O(n)	O(1)	0(n)
get, update	0(1)	O(log n)	O(log n)
put	O(1)	O(log n)	O(n)
remove	0(1)	O(log n)	O(n)
printAll	O(n log n)	O(n)	0(n)

- Conclusion: choice depends on table purpose and size of n
- Q. Ever want to use a sorted array?
 - A. It depends!