
BST search efficiencyBST search efficiency
Q: what determines the average time to find a
value in a tree containing n nodes?
A: average path length from root to nodes.
– Q: how long is that?
– Path lengths (“depths”): 1 (root) at depth 0, 2 at depth

1, 4 at depth 2, 8 at depth 3, …, log n levels in full tree

∑
=

⋅⋅=
n

i

i i
n

average
log

0
21 nlog≈

But …
– … tree must be balanced!
– Or complexity can reach O(n)

→

46

11

77

69

91

3

Insert to a BSTInsert to a BST
Same general strategy as find operation:
if (info < current node) insert to left;
else if (info > current node) insert to right;
else – duplicate info – abort insert;

– Need a way to signal “unsuccessful” insert
Project 3 ADT – insert method returns a boolean value – true
if successful, false otherwise

Use either iterative or recursive approach
2 potential base cases for recursive version:
– Already in tree – so return false; do not insert again
– An empty tree where it should go – so set parent’s link

Insertion order affects the tree?Insertion order affects the tree?

Try inserting these values in this order:
6, 4, 9, 3, 11, 7
Q: does the insertion order matter?
A: yes!
– Proof – insert same values in this order:
3, 4, 6, 7, 9, 11

Moral: sorted order is bad, random is good.
– Note: cheaper to insert randomly, than try to

set up self-balancing trees (see AVL trees)

Deleting a node (outline)Deleting a node (outline)
First step: find node (keep track of parent)
Rest depends on how many children it has
– No children: no problem – just delete it (by setting

appropriate parent link to null)
– One child: still easy – just move that child “up” the tree

(set parent link to that child)
– Two children: more difficult – strategy is to replace the

node with (either) largest value in its left subtree (or
smallest in right subtree) – may lead to one more delete

Generally, deleteNode method will return a node
pointer – to replace the child pointer of parent

deleteNodedeleteNode algorithmalgorithm
Pseudocode for an external method:

TreeNode deleteNode(Comparable item,
TreeNode node) {

if (item is less than node’s item)
// delete from left subtree (unless there is no left subtree)
// return result of delete (or null if no left subtree)

else if (item is greater than node’s item)
// same as above, but substitute right subtree

else // node contains the item to be deleted
// return result of delete this node ;

}

Actually removing a nodeActually removing a node
More pseudocode (with strategic real code mixed in):

TreeNode deleteThis(TreeNode node) {

if (node is a leaf)
// return a null result

else if (node has just one child)
// return that child

else { // node has two children
// find “greatest” node in left subtree
// copy item of greatest node in left subtree to node.item
// deleteNode(item, node.left);
return node;

}
}

greatestNodegreatestNode, & other utilities, & other utilities
Greatest node in BST is all the way to the right
– So it is easy to find with recursion:
TreeNode greatestNode(TreeNode node) {

if (node.right == null)
return node;

else return greatestNode(node.right);
}

Use recursion to calculate height too
– At any node: 1 + maximum(left height, right height)

To count: “traverse” the nodes – add 1 at each visit
Other methods from Project 3, part 2:
– Think recursively!

SortingSorting
Probably the most expensive common operation
Problem: arrange a[0..n-1] by some ordering
– e.g., in ascending order: a[i-1]<=a[i], 0<i<n

Two general types of strategies
– Comparison-based sorting – includes most strategies

Apply to any comparable data – (key, info) pairs
Lots of simple, inefficient algorithms
Some not-so-simple, but more efficient algorithms

– Address calculation sorting – rarely used in practice
Must be tailored to fit the data – not all data are suitable

Selection sortSelection sort

Idea: build sorted sequence at end of array
At each step:
– Find largest value in not-yet-sorted portion
– Exchange this value with the one at end of unsorted

portion (now beginning of sorted portion)
Complexity is O(n2)– but simple to program
– Also – best way to find kth largest, or top k values

largest

 sorted

Heap sortHeap sort
Another priority queue sorting algorithm
– Note about selection sort: unsorted part of array is like

a priority queue – remove greatest value at each step
– Also recall that heaps make faster priority queues

Idea: create heap out of unsorted portion, then
remove one at a time and put in sorted portion
Complexity is O(n log n)
– O(n) to create heap + O(n log n) to remove/reheapify

Note proof: O(n log n) is the fastest possible
class of any comparison-based sorting algorithm
– But constants do matter – so some are faster than others

Insertion sortInsertion sort
Generally “better” than other simple algorithms
Inserts one element into sorted part of array
– Must move other elements to make room for it

current

Complexity is O(n2) (code)

– But runs faster than selection sort and others in class
– Really quick on nearly sorted array

Often used to supplement more sophisticated sorts

Divide & conquer strategiesDivide & conquer strategies
Idea: (1) divide array in two; (2) sort each part; (3)
combine two parts to overall solution
e.g., mergeSort
if (array is big enough to continue splitting)

divide array into left half and right half;
mergeSort(left half);
mergeSort(right half);
merge(left half and right half together);

else sort small array in a simpler way

– Need 2n space, and O(n) step to merge two halves
– Overall complexity is O(n log n)
– The best sort for large files (especially if too big for memory)

Used in java.util.Arrays.sort(Object[] a)
– Collections.sort(a list) copies to array, uses Arrays.sort

Quick sortQuick sort
Invented in 1960 by C.A.R. Hoare
– Studied extensively by many people since
– Probably used more than any other sorting algorithm

Basic (recursive) quicksort algorithm:
if (there is something to sort)
{ partition array;

sort left part;
sort right part; }

– All the work is done by partition function
– So there is no need to merge anything at the end

Partitioning (for Partitioning (for quickSortquickSort))

Done by performing two series of “scans”
scan from (i = left) until a[i] >= pivot;
scan from (j = right) until a[j] <= pivot;
swap a[i] and a[j], and continue both scans;

stop scanning when i >= j; (code)

all <= pivot all >= pivot
pivot

Arrange so elements in the two sub-arrays are on correct
side of a pivot element
– Also means pivot element ends up in its final position

Quick sort (cont.)Quick sort (cont.)

Complexity is O(n log n) on average
– Fastest comparison-based sorting algorithm
– But overkill, and not-so-fast with small arrays

– Um … what about a small partition?!
– One optimization applies insertion sort for partitions

smaller than than 7 elements
Also worst case is O(n2)!
– Depends on initial ordering and choice of pivot

Used in Arrays.sort(primitive array)

A table ADT A table ADT (a.k.a. a Dictionary)(a.k.a. a Dictionary)
interface Table {

// Put information in the table, and a unique key to identify it:
boolean put(Comparable key, Object info);
// Get information from the table, according to the key value:
Object get(Comparable key);
// Update information that is already in the table:
boolean update(Comparable key, Object newInfo);
// Remove information (and associated key) from the table:
boolean remove(Comparable key);

// Above methods return false if unsuccessful (except get returns null)
// Print all information in table, in the order of the keys:
void printAll();

}

Table implementation optionsTable implementation options

Many possibilities – depends on application
– And how much trouble efficiency is worth

Option 1: use a BST
– To put: insertTree using key for ordering
– To update: deleteTree, then insertTree
– To printAll: use in-order traversal

Option 2: sorted array with binary searching
Option 3: implement as a “hash table”
– Hashing – later

Recursive binary searchingRecursive binary searching
Start with sorted array of items: a[0..n-1]
public class Item implements Comparable<Item> {…}

Binary searching algorithm is naturally recursive:
int bsearch(Item key, Item a[], int left, int right) {

// first call is for left=0, and right=n-1
if (left > right) return -1; // unsuccessful search
int middle = (left + right) / 2; // location of middle item
int comp = key.compareTo(a[middle]);

if (comp == 0) return middle;// success
if (comp > 0) // otherwise search one half or the other

return bsearch(key, a, middle+1, right);
else return bsearch(key, a, left, middle-1);

}

Iterative binary searchingIterative binary searching
int bsearch(Item key, Item a[]) {

int low = 0, high = a.length-1, middle;
while (low <= high) {

middle = (low + high) / 2;
int comp = key.compareTo(a[middle]);
if (comp == 0) return middle; // success
if (comp > 0) low = middle + 1;
else high = middle – 1;

}
return -1; // unsuccessful search

}

Both versions are same complexity class (next slide)
– Interpolation search, by the way, is in a faster class

Trick is to calculate middle more intelligently

Complexity of binary searchComplexity of binary search
Say array has 15 elements, k1..k15: a[0..14]
– If key is at k8 (a[7]) then found by 1 comparison
– If key is at k4 or k12, takes 3 comparisons …

i.e., it’s just like searching a BST

k8

k4 k12

k10k2 k6 k14

k1 k3 k5 k7 k11 k15k9 k13

Problem size is halved
at each step
– So complexity class is
O(log n)

Interpolation search
reduces more quickly
– Class is O(log log n)

Hashing ideas and conceptsHashing ideas and concepts
Idea: transform arbitrary key domain (e.g.,
strings) into “dense integer range”
– Then use result as index to table
– int index = hash(key); // transform key to int

Collisions: hash(k1)==hash(k2), k1 != k2
– Usually impossible to avoid (“perfect hashing” rare)
– Therefore, must have a way to handle collisions

e.g., if using “open addressing” techniques -
while (occupied(index)) index = probe(key);

Concept: insertion/searching is quick – but only
until the table starts to get filled up
– Then collisions start happening too often!

Implementing a hash tableImplementing a hash table
Constructor allocates memory for array of items,
and initializes all items to “empty” key
– size is size of array
– n is the number of items in the table
– Load factor is n / size
put method uses hash(key) (and probe(key)if open
address hashing) to find empty slot for new item
– May be necessary to resize array

If so, also necessary to rehash existing items
If open address hashing, resize when load factor > 50%

Open address hashingOpen address hashing
get & update methods use hash(key) and
probe(key) in exact same sequence as put
– To find existing info where it was put
remove is more complicated
– Cannot just remove an item – future probes for get

and update might terminate prematurely at empty slot
Common trick is to have “deleted” key

– Problem with that is table can seem full prematurely
Inefficient alternative rehashes all items when any removed

Note: to printAll in key order – must sort first
– So O(n log n) at best!

Hash functionsHash functions
Goal: uniform distribution of keys
– Means each index of table is equally likely
– Important for reducing collisions

Common approach is a restricted transformation
– Step 1 – transform key to large integer
– Step 2 – restrict integer to 0…size-1

Usually done with modulus operator - %
Lots of variations – partly depends on key type
– General observation: hard to find a good hash function
– Note: should be “cheap” to compute too – e.g.,

division is slower on most CPUs than addition

Resolving collisionsResolving collisions
Simplest open address approach is linear probing
– If (index = hash(key)) is not empty, try index+1,

then index+2, …, until empty slot
Note: searching for first “open address”

– Leads to “primary clusters” – collisions bunch up
Quadratic probing – vary probe, like 1, 3, 6, …
– Leads to “secondary clusters” but not as quickly

Double hashing – probe(key) varies by key
– Best open addressing approach for avoiding clusters

Or completely different approach – “chaining”

ChainingChaining
Constructor allocates memory for array of Lists, and
creates an empty list for each element of the array
put method uses hash(key) and appends to end of list at
that index of array
– Still should resize when load factor approaches 80%

Clustering is not a problem, but long lists slow performance
remove method is easier now – just delete from list
But lots more overhead than open addressing
– Must store node links as well as key and info
– Use list method calls instead of direct array access

Compare 3 table implementationsCompare 3 table implementations

O(n)O(1)O(n)create (new table)

Sorted arrayBSTHash tableTable operation

O(log n)O(log n)O(1)get, update

O(n)O(log n)O(1)put

O(n)O(log n)O(1)remove

O(n)O(n)O(n log n)printAll

Conclusion: choice depends on table purpose and size of n
Q. Ever want to use a sorted array?
– A. It depends!

