Then and Now
Five Questions with CS Graduates Xiaodong Zhang (PhD 1989) and Jude Allred (BS 2009)
Twenty years ago, Professor Xiaodong Zhang (张晓东) had just completed his PhD dissertation in Boulder. Today, he is the Robert M. Critchfield Professor in Engineering and chair of the Department of Computer Science and Engineering at the Ohio State University. 
He tells us that his career path from Boulder to Columbus, Ohio, has been both challenging and exciting. He spent his first eight years after graduation at the University of Texas in San Antonio where he became acting chair of the newly formed computer science program and led the effort to build a Ph.D. program; from there, he moved to the College of William and Mary in Williamsburg, Virginia; and most recently, he has been at the Ohio State University. He also spent two years serving as a program director at the National Science Foundation in Washington DC. He was recently elected a Fellow of the IEEE for contributions to computer memory systems.
At the other end of the time spectrum, Jude Allred competed his BS in Computer Science in Boulder last year, where he was also recognized the college’s award for outstanding service by an undergraduate. On July 4, 2009, he was married to Stirling Gibbs, and they moved to Brooklyn where Jude has begun his career with the Manhattan office of Fog Creek Software.
Jude’s award from the college was well-deserved. He served both as an Engineering Fellow and a member of the Engineering Excellence Fund Committee. Within our own department, Jude was chair of the student-run CSUAC (Computer Science Undergraduate Advising Committee), and as he prepared to graduate he was busy coordinating a job fair and other CSUAC activities. He generously gave his time to at least a dozen other activities such as the local ACM chapter and serving on the external review of the Art and Art History Department. His volunteer work of the moment includes pushing through a free-technology-for-students-and-startups initiative at Fog Creek in his own free time.
We posed a series of questions to our two graduates from then and now, and are happy to report to you with their answers.
Would each of you please tell us about the focus of your computer science work.
Xiaodong Zhang: A common thread of my research focuses on fast data accesses and resource sharing with cost- and energy-efficient management at different levels of the memory and storage hierarchies in distributed computers and Internet systems. I have led research projects for design and implementation of caches, memory and storage systems. One work of ours, impacting both academic research and technology advancement, is the development of the LIRS algorithm
. This algorithm fundamentally addresses the limits of the LRU replacement used in almost all memory-capable digital systems, from large computer systems and databases to small devices, such as cell phones. LIRS and its approximation methods have updated the memory management in major production systems, such as Linux, NetBSD, and MySQL. Several other algorithms and system designs of ours have been widely adopted in the memory controllers in commercial processors (e.g. AMD, Intel, NVADIA, and Sun), and in the virtual memory management of Linux. In addition, our new research findings and solutions have been included in several computer architecture and system textbooks. 

Being a professor, I have been fortunate to have a unique opportunity to mentor and teach many talented students, and, conversely, to update my own knowledge by learning from them. I have supervised several dozens of graduate students, visiting scholars and postdoctoral researchers. It is worthy to mention that five of my Ph.D. graduates become faculty members at academic institutions in the US, four of whom have been tenured and promoted to associate professors. Three of them received NSF CAREER awards, and one received a DoD Young Investigator award. My third generation Ph.D. graduates have been out for a few years.
Jude Allred: I work at Fog Creek Software, which is Joel Spolsky's company, and I'm a FogBugz developer. Because our company is fairly small, we're all more-or-less engaged with all of the products and initiatives of Fog Creek. Aside from general engagement, I'm part of a small team of software developers (and one project manager) actively working on FogBugz, which is an issue tracker and project management suite. We're all responsible for the performance, maintenance, and advancement of FogBugz, and as such we all have many, many duties that might arise. Naturally, some of us will spend more time in some areas than in others, so we specialize in that way. I’m the most knowledgeable about our full-text search architecture and algorithms, as well as database performance optimization, but we're all expected to be capable of doing whatever needs to be done. At the moment, I’m working on a small plugin to provide customizable landing pages for FogBugz sites, handling support cases, trying to figure out why Microsoft's ActiveRecord interface is 10x slower than sending SQL directly to our database, writing a functional spec for Fog Creek's Student and Startup initiative, and teaching our Wasabi compiler how to properly type check and link with inline C# code.
Professor Zhang, what are the biggest changes that you've seen in the field of computing over the twenty years since you've completed your PhD?

Xiaodong Zhang: The first biggest change I have seen is that “computing” has become a basic and necessary utility everywhere in the human society, almost equivalent to the value of water and electricity. It is low-cost (or free in many ways), pervasive, and well connected by Internet and wireless networks.

The second biggest change I have seen is that we have entered a data explosion era. The concept of “computing” has been shifted from CPU intensive to data intensive operations. Today, most enterprises, online stores, Web service providers, and various scientific application practitioners must timely process an increasingly huge amount of data, which are the sources of revenue and critical knowledge base of the human society. 

Third, parallelism and concurrency have become the basic programming and execution model everywhere in computer systems. I did my Ph.D. thesis in parallel computing 20 years ago when parallelism was considered as a new technology. Now instruction-level parallelism and multithreads are required on chips, such as in multi-core processors and in SSD flash memory; memory-level-parallelism creates concurrent accesses to DRAMs, MapReduce-like models enable massively parallel data processing in large scale distributed systems; and a RAID-like structure has been a standard storage configuration for concurrent I/Os.

Finally, the rapid economic globalization makes “the world be flat.” For example, we buy daily goods manufactured in China in major shopping centers all over the world; we drive Toyota made in Japan and BMW made in Germany, and we watch the Samsung LED TVs made in Korea. However, the whole world continues to depend on the core computing technology of both hardware and software made in USA. The strong and dominant American leadership in computing has not changed.

Jude, what are the workdays like in 2010 for a new graduate?

My days are pretty varied. The only things that don't vary, really, are that I work 8-hour days, and lunch is at noon. I have my own office, an Aeron chair, and a very large whiteboard. Here's a short list of common activities:

1. Fixing a bug or performance issue: Sometimes this involves working with a customer directly. We’re lucky in that most of our customers are software developers, so they're generally pretty helpful in diagnosing problems.

2. Implementing new functionality: I always have some sort of project that I’m working on. (If it’s a large project I might be put into ‘protected’ mode, which means that the other developers will take care of any tech support issues that might otherwise come my way.) Creating new functionality entails implementing code in a branch repository (we use Mercurial), getting code reviews as I progress, providing a custom build to our QA team for bug and usability testing, and then once everything looks good, merging the branch back into the main repository. Though uncommon, I might be working on several branch repositories simultaneously (a feature in one, bug fix in another, performance experiment in a third, etc.), which means that Mercurial’s distributed nature, lightweight branching, and clean merges are absolutely essential.

3. Writing or giving feedback on a functional specification: All new features with a significant visible-to-the-user component start out as functional specs. This is because it’s a lot faster to iterate on user interface and behavioral choices in text and with mockups than it is to do so with code. This is mostly the domain of our project manager, so the specs that I write are usually for things which are
highly technical, but still have a significant UI component.

4. Performing a code review: All of our code is peer-reviewed, and we perform the reviews in Kiln. This echoes the mentality of doing things right the first time so as to minimize the burden of maintaining the code later.

5. Lunch. We eat lunch together every day. It’s rather like Thanksgiving, but daily and much more varied. This is a very significant part of my day, as it’s a chance for me to sit down and chat with anyone about anything. Since I’ve started here, I’ve had several corporate-strategy related ideas that I've been able to discuss with our CEO by virtue of sitting next to him at lunch. It's really nice to feel like my thoughts are given serious consideration. I’ve also gotten pretty good at making lattes.

6. Talking to people: I usually have a queue of questions or things that I want to discuss with assorted people, so I'll call them into my office whenever they walk past. Some things are more efficient to talk about than to convey via text, ergo we talk. I talk to our lead programmer at least a little bit every day, as he talks to everyone and can appraise me on any essential information.
 We don't have formal meetings, and don't use scrum, agile, or any of the commonly taught project management buzzwords. We use Evidence-Based Scheduling and FogBugz to manage our time and activities. If I’m coding, I spend most of my time in Visual Studio (primarily because of its awesome debugger), and little of it with an assortment of useful tools (.Net Reflector, JetBrains DotTrace, Grep, hg Annotate) plus compiling and version control tasks. When I’m not coding or talking to people about coding, I’m using FogBugz, since it handles all of our communication (both internally and with customers), specs, tasks, time estimates and tracking, code reviews, etc. I feel like about 90% of my day (excluding lunch) is productivity, and the rest is overhead dealing with how to best be productive.

What advice would you each give to an 18-year-old who is considering computer science as a career?

Professor Zhang: First, the strong U.S. leadership in computing technology is also reflected by providing best computer science education and research program in universities. Thus, choosing a computer science major in a U.S. university is a very wise decision with many advantages.

Second, computer science is not equivalent to programming at all (perhaps you saw that in Jude’s answer). In fact, basic programming classes are required to all majors now in U.S. universities, just like English and calculus classes. Programming provides us with a basic vehicle to communicate with the computers. The computer science study focuses on laying a foundation to gain both algorithm analysis ability and practical techniques of implementations for computer systems and applications. This is one of the most challenging and exciting topic in the field of science and engineering.

Third, the computer science field is still young, and there are a lot of challenges and space to grow. The field rewards highly innovative students who may not have transcripts of straight A’s. The world has been changed by several major computer companies that were started by undergraduate and graduate students, such as Microsoft, Sun Microsystems, Google, Yahoo! and many others. 

Fourth , hardworking is a basic requirement in our field. Computer science is a highly personal, merit-based field. A lot of effort is required to master the subject. In Malcolm Gladwell’s recent book of Outliers, he gives a rule of 10,000 hours concentrating on a subject in any fields in order to be an expert based on true stories of many world leaders, including Bill Gates of Microsoft, Bill Joy of Sun Microsystems, and Steve Jobs of Apple.

Finally, a unique feature of the computer science field is that it disseminates the knowledge/technologies and transfers them to society much faster than other fields do. Because it a common practice in our field to make new ideas available to the public without a patent protection, to make high quality software as open source, and to communicate and exchange scholarships in highly competitive conferences, instead of journals.
Jude Allred: Get your feet wet as soon as possible. Computer science is special in that you can experiment and innovate at a rapid pace and with minimal tools.  The applications of CS are very, very broad, so explore until you find something that’s fascinating to you. I still agree with most of the advice that I read during the my freshmen year: www.joelonsoftware.com/articles/CollegeAdvice.html.

Right from the start, your CSCI 1300 and 2270 are rather the ultimate. In those courses I
learned the fundamental tools that I’ve since been reapplying constantly.  If you're able to think at a low level, and able to decompose high-level workings into their low-level components, you can think at any level. It's rare that I directly touch pointers nowadays, but I see them everywhere and manipulate them constantly. API programming influenced me a lot.  It introduced me to C# and .NET, which then enabled me to make non-command-line-based programs. Breaking free of the command prompt was a pretty substantial thing for me, as it meant that I was suddenly able to produce meaningful software.  Since that class, I've developed a host of pet projects and fun little apps that I use with some frequency.

Persist in your attempts to find an internship—I initially tried in 2007 and was rejected. I’m glad that I tried again a year later. My GPA and extracurricular activities got me past the resume screen, and my knowledge of data structures helped me ace three of the interviews, combinatorics the fourth, recursion and functional languages the fifth, bit wise operations and memory management the sixth, and a general knowledge and comfort with algorithm development and runtime analysis was useful in all of them.

Our thanks to Professor Zhang and new graduate Jude Allred for taking the time to talk with us and with future students of computer science.


� ACM SIGMETRICS’02





