Inheritance (with C++)
Starting to cover Savitch Chap. 15

More OS topics in later weeks

(memory concepts, libraries)

Inheritance Basics

e A new class Is inherited from an existing class

e Existing class Is termed the base class
— It is the "general” class (a.k.a. superclass, or parent)

e New class is termed the derived class
— It is the "specific” class (a.k.a. subclass, or child)

— Automatically has (i.e., "inherits") all of the base class's
member functions and variables

— Can define additional member functions and variables
e And override inherited virtual functions (but that's a later topic)

Inheritance begets hierarchies

e "Is a" relationships
e Imagine: |
class Basketball -

IS derived from

class Ball
e Then:
any Basketball is a Ball

e Reverse not always true: a Ball can be a
Football, or a Baseball, or ...

Base class example: Employee

class Employee {
public:
Employee();
Employee(string theName, string theSsn);
string getName() const;
string getSsn() const;
double getNetPay() const;
void setName(string newName);
voild setSsn(string newSsn);
voild setNetPay(double newNetPay);
void printCheck() const;
private:
string name;
string ssn;
double netPay;

}:

Derived class: HourlyEmployee

class HourlyEmployee : public Employee {
I/ Instantly inherits all member functions and variables of class Employee
public:

HourlyEmployee();

HourlyEmployee(string theName, string theSsn,

double theWageRate, double theHours);

voild setRate(double newWageRate);

double getRate() const;

void setHours(double hoursWorked);

double getHours() const;

void printCheck(); //plan to redefine printCheck function
private:

double wageRate;

double hours;

}:

Writing derived classes

e 3 possibilities for member functions:
— Inherit - i.e., do nothing
— Redefine — have new method act differently
— Define new — add abilities not in base class at all
e 2 possibilities for member variables:
— Inherit — though If private, may not directly access/set
— Define new — more data in addition to base class data

e Notice: cannot redefine member variables —
attempts to do so will create "shadow variables"

— 1.e., Just creates a new variable with the same name,
effectively hiding the inherited one — usually a mistake

Derived class constructors

e A base class constructor is always invoked first
— 1.e., first task of derived class constructor's initialization list

— If not done explicitly, base class default constructor will be
called implicitly
e Will result in compile error if base class has no default ctor

e Need explicit call to use an alternative base class ctor
— Syntax: BaseClassName(argl, arg2, ..)

e Derived Employee example:
HourlyEmployee: :HourlyEmployee(string name,
string number, double rate, double hours)
: Employee(name, number), wageRate(rate),
hours(hours)

11}

A subclass object's composition

e Remember: a derived class definition just
defines part of the resulting object

— The rest of the object Is the base class portion

HourlyEmployee

} Employee portion

wageRate:
hours:

Redefining # overloading

e Redefining only applies to a derived class
— Same parameter list (i.e., same "signature"’)
— Essentially "re-writes" the same function
e Overloading can happen in base or derived
— Different parameter list — different signature
— Defining a new function with the same name
e Recall definition of a signature:
— Name(parameter list)
— Does not include return type, and ‘&' ignored

Accessing redefined base function

e A redefined base class definition is not "lost"
Employee jane;
HourlyEmployee sally;
Jane.printCheck(); // Employee function
sally.printCheck() ; // HourlyEmployee function
sally.Employee: -printCheck();
// uses scope resolution to call Employee function!

e Often done while implmenting derived class
— |et base function do some of the work

Some functions are not inherited

e All "normal" functions In the base class are
Inherited In the derived class

e The exceptions ("abnormal" functions?):
— Constructors and destructor
— Copy constructor and assignment operator

e Compiler generates default versions if you don't
redefine them in the derived class

— But remember that can be problematic if pointing to
dynamic memory, so often should redefine

Subclass operator= and copy ctor

e Although not inherited, a derived class typically
must use the base class's versions

® e.0.,an operator=inclass D : public B
D& D::operator=(const D &right) {
/I first call assignment operator of base class to take
/I care of all the inherited member variables
B:ioperator=(right);
./l then set new variables of derived class

by
e Copy ctor must use base class version too

D::D(const D &other) : B(other), ...{ }

Destructors in derived classes

e Easy to write If base class dtor Is correct

— No need to call base class dtor — because it Is
called automatically at the end of the derived
class’s dtor

e S0 derived class destructors need only
worry about derived class variables

— Usual purpose: release resources allocated
during the object's life

— Let base class dtor handle inherited resources

Examples: PFArrayD and ...Bak

~mikec/cs32/demos/
SavitchAbsolute ch14/
e Base class PFArrayD: PFArTayD.h

— Stores a pointer to a double array on free store
e Array has a fixed capacity after construction

— Has magr., other functions, plus [] and = ops
e Derived class PFArrayDBak: <..PFArrayDBak>

— Has pointer to its own array — can be used to
npackup and restore data in base class's array

Redefines ctors, dtor and operator=

Writing derivable classes

e Always provide a constructor that can be called
with no arguments

e Control subclass' access to member variables and
functions as appropriate — three choices:
— publ 1c members are accessible to all other classes

— private members are not directly accessible to any
other class — should be used for most variables, and
also appropriate for "helper" functions

— A third choice is protected member access

e Only subclasses (those derived from this one) can access
e Some consider it bad OOP practice — violates info hiding

protected / private Inheritance

e Note: rarely used; frankly a little weird
— Destroys “is a” relation of derived class object

e Protected Inheritance — all public members in the
base class become protected members in the
derived class

class SalariedEmployee : protected Employee {.}
e Private inheritance — all members in the base class

become private in the derived class
class SalariedEmployee : private Employee {.}

Many more Iinheritance issues

e For Instance: Sometimes It Is better to use
“has a” Instead of “is a” relationship

— Means one class has an object of another class
— Generally a more flexible design
e Can also do multiple inheritance in C++

class ClockRadio :
public Radio, public AlarmClock;

— Tricky though (more later, after vii rtual keyword)
e “Slicing” and “upcasts” — more to come

Virtual functions — concepts

e \irtual: exists in essence though not in fact

e Idea Is that a virtual function can be “used”
before 1t 1s defined

— And It might be defined many, many ways!
e Relates to OOP concept of polymorphism
— Associate many meanings to one function
e Implemented by dynamic binding
— A.k.a. late binding — happens at run-time

Polymorphism example: figures

e Imagine classes for several kinds of figures
— Rectangles, circles, and ovals (to start)
— All derive from one base class: Figure
e All “Figure” objects inherit: void draw()
— Of course, each one implements it differently!
Rectangle r;
Circle c;
r.draw() ; // Calls Rectangle class’s draw()
c.draw(); // Calls Circle class’s draw

e Nothing new here yet ...

Figures example cont. — center()

e Consider that base class Figure has functions
that apply to “all” figures

e e.g., center(): moves figure to screen center
— Erases existing drawing, then re-draws the figure

— So Figure: :center() usesdraw() to re-draw

e But which draw() function will be used?

— We’re implementing base class center() function, so
we have to use the base class draw() function. Right?

e Actually, it turns out the answer depends on how
draw() Is handled in the base class

Poor solution: base works hard

e Figure class tries to Iimplement draw to work for
all'(known) figures

— First devise a way to identify a figure’s “type”

— Then Figure: :draw() uses conditional logic:

1T (/*the Figure is a Rectangle */)
Rectangle: :draw();

else 1Tt (/*theFigureisaCircle */)
Circle::draw();

e But what if a new kind of figure comes along?
— e.g., how to handle a derived class Triangle?

Better solution: virtual function

e Base class declares that the function 1s virtual:
virtual void draw() const;

e Remember it means draw() exists In essence

e Such a declaration tells compiler “I don’t know
how this function is implemented, so wait until
It Is used In a program, and then get its
Implementation from the object instance.”

e The instance will exist In fact (eventually)
— Therefore, so will the implementation at that time!

e Function “binding” happens late — dynamically

Another virtual function example

e Record-keeping system for auto parts store
— Track sales, compute daily gross, other stats
— All based on data from individual bills of sale

e Problem: lots of different types of bills

e |dea — start with a very general Sale class
that has a virtual bi 1 1 () function:

virtual double bill() const;
e Rest of idea — many different types of sales

will be added later, and each type will have
Its own version of the bi 11 () function

Sale functions: savings and op <

double Sale::savings(const Sale &other) const

1
}

bool operator < (const Sale &first,
const Sale &second)
{

}
e Notice both functions use member function bi 11 !

return (bill(Q — other.bill());

return (First.bill() < second.bill());

A class derived from Sale

class DiscountSale : public Sale {

public:
DiscountSale();
DiscountSale(double price,

double discount);
double getDiscount() const;
voild setDiscount(double newDiscount);

double bill() const; /[implicitly virtual

private:
double discount; /[Inherits price

}

DiscountSale’s bill() function

e First note — It Is automatically virtual
— Inherited trait, applies to any descendants
— Also note — rude not to declare it explicitly

e Of course, definition never says virtual:

double DiscountSale::bill() const {
double fraction = discount/100;
return (1 — fraction)*getPrice();

}

— Must use access method as price Is private

The power of virtual Is actual!

® e.9., base class sale written long before
derived class DiscountSale

e Sale had members savings and ‘<’ before
there was any idea of class DiscountSale

e Yet consider what the following code does
DiscountSale dl1, d2;

dl.savings(d2); //calls Sale’s savings function

e In turn, class sale’s savings function uses
class DiscountSale’s bill function.

Wow!

Clarifying some terminology

e Recall that overloading # redefining

e Now a new term — overriding means
redefining a virtual function

e Polymorphism is an OOP concept
— Overriding gives many meanings to one name
e Dynamic binding Is what makes it all work

e “Thus,” as Savitch puts it, “polymorphism,
late binding, and virtual functions are
really all the same topic.”

Why not all virtual functions?

e Philosophy issue: pure OOP vs. efficiency

— All functions are virtual by default in another
popular programming language (Java) — there
must take steps to make functions non-virtual

— C++ default i1s non-virtual — programmer must
explicitly declare (except when inherited trait)

e Virtual functions have more “overhead”
— More storage — for class virtual function table
— Slower — a look-up step; less optimization

