
Simpler polymorphism demo
(~mikec/cs32/demos/figures)

Base: Figure has virtual void print()
– print() is used in printAt(lines)

Derived: Rectangle just overrides print()
Which print() is used in the following code?
Figure *ptr = new Rectangle,

&ref = *new Rectangle('Q', 5, 10, 4);
ptr->printAt(1); ref.printAt(1);

What if print() was not declared virtual?
What if line 2 above just had ref, not &ref?
– To know why, see “slicing” … a few slides from now

“Pure virtual” and abstract classes

Actually class Figure’s print() function is useless
– It should have been a pure virtual function:
virtual void draw() const = 0;

– Says not defined in this class – means any derived
class must define its own version, or be abstract itself

A class with one or more pure virtual functions is
an abstract class – so it can only be a base class
– An actual instance would be an incomplete object
– So any instance must be a derived class instance

Types when inheritance is involved

Consider: void func (Sale &x) {…} or
similarly: void func (Sale *xp) {…}
– What type of object is x (or *xp), really? Is it a Sale?
– Or is it a DiscountSale, or even a CrazyDiscountSale?

Just Sale members are available
– But might be virtual, and Sale might even be abstract
– & and * variables allow polymorphism to occur

Contrast: void func (Sale y) {…}
– What type of object is y? It’s a Sale. Period.
– Derived parts are “sliced” off by Sale’s copy ctor
– Also in this case, Sale cannot be an abstract class

Type compatibility example
Consider:
Dog d; Pet p;
d.name = "Tiny";
d.breed = "Mutt";
p = d; // “slicing” here
– All okay – a Dog “is a” Pet

Reverse is not okay
– A Pet might be a Bird, or …

And p.breed? Nonsense!
Also see slicing.cpp at
~mikec/cs32/demos/

class Pet {
public: // pls excuse bad info hiding

string name;
virtual void print();

};

class Dog : public Pet {
public:

string breed;
virtual void print();

};

Destructors should be virtual

Especially if class has virtual functions
Derived classes might allocate resources
via a base class reference or pointer:
Base *ptrBase = new Derived;

... // a redefined function allocates resources
delete ptrBase;

If dtor not virtual, derived dtor is not run!
If dtor is virtual – okay: run derived dtor,
immediately followed by base dtor

Casting and inherited types
Consider again: Dog d; Pet p;
“Upcasting” (descendent to ancestor) is legal:
p = d; // implicitly casting “up”
p = static_cast<Pet>(d); // like (Pet)d
– But objects sliced if not pointer or reference

Other way (“downcasting”) is a different story:
d = static_cast<Dog>(p); // ILLEGAL
– Can only do by pointer and dynamic cast :
Pet *pptr = new Dog; // we know it’s a Dog
Dog *dptr = dynamic_cast<Dog*>(pptr)
– But can be dangerous, and is rarely done

Multiple inheritance and virtual
Idea: a ClockRadio is a Radio and an AlarmClock
– But what if class Radio and class AlarmClock are both derived

from another class, say Appliance?
– Doesn’t each derived object contain an Appliance portion?
– So wouldn’t a Clockradio have two copies of that portion, and

how can such a scheme possibly work properly?
Answer: it can work, but only by using virtual inheritance!
class Radio : virtual public Appliance;
class AlarmClock : virtual public Appliance;
class ClockRadio : public Radio, public AlarmClock;

– Now a Clockradio has just one Appliance portion, not two
See demo code in ~mikec/cs32/demos/multi-inherit
But note: hierarchy is still messed up, and still lots of
chances for ambiguity – best to avoid multi-inheritance!

How do virtual functions work?
Not exactly magic, but safe to consider it so
virtual tells compiler to “wait for instructions”
until the function is used in a program
So the compiler creates a virtual function table
for the class, with pointers to all virtual functions
In turn, every object of such a class will be made
to store a pointer to its own class’s virtual
function table
At runtime: follow the pointers to find the code!

