Computer Science 32
Object-Oriented Design and
Implementation (n c++ on Linux)

e Pre-requisite: CS 24

— So already know much C++ including object-based
fundamentals: classes and ADTs

— Also familiar with at least some Linux usage
e Designed for 2"d year CS majors
— Others welcome if pre-reg. met and space permits

e Primary goal: ready for CS 48 & upper div. CS

Course structure

e Cover all of Reader + key chapters of Textbook
e Mixture of OOP/C++ and OS topics (not sequentially)

OOP/C++ OS/Linux

Intro. OOP and OO design | Intro. OS and Unix

Classes — basics Processes
Plus four

Classes — advanced Tools and pgm. building exams:
one after
Inheritance, polymorphism | Memory concepts every six

. . lectures
Templates and STL Libraries (or s0)

Reqguirements

e 84 percent of grade: best three out of four exams
(each counts 28 percent)

— Probably Wednesday, April 17

— Probably Friday, May 3

— Probably Monday, May 20

— Probably Friday, June 7 (No final exam this quarter)
e 16 percent of grade: labs and related work

e Students are responsible for monitoring changes to
(0]0)

e Questions?

To Do — first week

e Readings #1 and #2 (from Reader)
— In general, read ahead of lectures

e Attend your assigned lab section next week
— First week’s labs were cancelled

e Verify CSIL access well before next
Wednesday

— You need a user account @engineering.ucsb.edu
(@cs 1s an alias) — apply online if you don’t
already have one

— Change password as required — sign on and play a
bit with Linux commands (see Reading #1)

Underlying computer system
= hardware + software

Operating System software
‘ Main Memory ‘ 1/0 devices | - hardware

chPU
Pro gram Feqister

counter [(BE] il Devices alert the CPU that they have
a request (keyboard input, disk read
Cache Systerm b —— return) via an interrupt (signal sent
po vt on the bus). This interrupts what the
CPU is doing so that it can respond to

hrlgt ":hm (execute code for) the request

l (interrupt handler).
/O bus

Expansion slots for

uss Graphics Disk)
Adant other devices such
\I

mn I i as network adaptors
Molise Keybnjard Disp)Lﬁ;

k myprog.cop (text flle)
myprog (binary file)

Thanks to Chandra Krintz and Kevin Sanft, for this figure and some other parts of these lecture notes.

Processing data & instructions

e Program instructions and data are in memory

— CPU tracks which instruction it's on using a dedicated register
(PC) which holds the address of the instruction

e CPU stores the next few instructions in a cache — much
faster to access than memory

— Similarly stores data used by the instructions in a data cache

— For even faster access, the CPU stores some data values and
addresses in registers (fewer in number than cache entries and
even faster to access than cache)

e CPU components (hardware registers, ALU, bus) all use
same data width (e.g., 32 bit or 64 bit)

Processing (continued)

e System bus = address bus + data bus + other signals
(wires)

— CPU requests the next instruction address by putting it on the
address bus (wires connected to pins)

— CPU requests data used by the instruction (operands) by putting
the addresses on the data bus

e CPU toggles other pins to identify which devices
(memory, 10) it wishes to access — and whether it wants
to read or write

e Devices use special wires/pins to alert the CPU that the
data that the CPU requested are ready

— The CPU doesn’t block after a request, it goes onto another task
until the device “interrupts” it with the data.

Things to ponder

e How are all of these computer operations
managed effectively?

— After all, the CPU just responds to the next
Instruction. So how are all the instructions
managed, especially when there are many
clients (users, processes)?

e How are we — and our simple programs —
able to deal with such a complex system?

— Don’t we need an intermediary?

Operating systems: two views

e Top-down view: an OS Is software that Isolates
us from the complications of hardware resources

— In other words, an OS is an application programmer’s
and a user’s interface to computer operations

Application/user programs (processes)

software
I
Main Memory \ 1/0 devices

e Bottom-up view: an OS Is software that allocates
and de-allocates computer resources — efficiently,
fairly, orderly and securely

Types of operating systems

e Single-user, single-process — 1.e., one customer,
and one job at a time

e Single-user, multi-process — one workstation, but
lots of stuff running

— Actually the CPU handles just one process at any
moment — jobs are swapped in/out in “time slices”

e Multi-user, multi-process — e.g., Unix/Linux
— Same Idea, but much more swapping to do
— And added fairness, efficiency and security concerns

Unix history (Linux prequel)

e AT&T Bell Labs — System V standard
— 1969-70: Ken Thompson wrote Unix in “B”
— 1972: Dennis Ritchie developed C — a better B
— Unix rewritten in C, 1973

— ... eventually System V, 1983
e UC Berkeley — BSD standard
— Started with a copy of System IV, late 1970s
— Lots of changes/additions in 1980s
— Now FreeBSD

e Open source — Linux, since early 1990s

Unix philosophy (same as C)

e Small is beautiful
— Each program does just one thing

— Pipe commands (or use successive functions in C) to
accomplish more complicated things

— Less typing is best (using)
e That’s why so many commands are short (ls, cp, mv, ...)
e Users/programmers know what they are doing
— That’s what makes the brevity sufficient
— Means very few restrictions (or safety nets) apply

LInuX

'l‘..1

e Linus Torvalds created it as a Finnish &= .
undergraduate student %4

e Posted on Internet in 1991 - oA

— Open source — licensed under GPL Y
— Version 1.0 in 1994; version 2.2 in 1999
— 1000’s of programmers working to enhance it
e \When programmers worldwide can read, modify,
and redistribute a program’s source code, it evolves.

— People improve it, adapt it, fix bugs, ...

What Is Linux?

e A fully-networked Unix-like operating system
e Multi-user, multitasking, multiprocessor system

— Fundamental In the system’s design and implementation
e Has both command-line and graphical interfaces

e Coexists with other operating systems
e Runs on multiple platforms

e Distribution includes the source code

e Can download it free from the Internet!

The Linux System

- is includ Set of data structures (usually on a disk) that holds
Jser co S - e . e 111
-SEL colnmands nclitdes directories of files. All devices are accessed like

sle programs scripts Sl ‘clos Wil
executable programs and scripts \ they are files on disk (open/close, read/write).

The shell interprets user User commands /
cominands. It 15 responsible for Shell /

findmg the commands and starting
their execution. Several different Kernel
shells are available. “Bash” 1s Device drivers

popular and what we will use.
Hardware /

File systéms

Software that makes use é all all of the
The kemel manages the hardware functionality that each device provides.
resources for the rest of the Drivers implement the file interface (open/close.
system read/write) so that processes can access the device(s).
Omne driver can support 1+ similar devices.

Thanks again to Chandra Krintz and Kevin Sanft.

Linux kernel — the actual OS

Manages processes

— Starts, stops, suspends, swaps, manages inter-process
communication, ...

— Maintains their state

Manages files (and directories)

Manages main memory

Manages disk operations

Delegates to CPU(s), printers, other 1/O devices

CPU scheduling

e Kernel sends interrupt to a process to give
another process a turn to use the CPU

e Processes can give up CPU when they
don’t need It (e.g. waiting on 1/O device)

Process1 Process?2

l User code

read->)

User cocdle
Disk Interrupt-> Kernel code Context switch
Return from read—> User code

Processes reguest kernel services

e Using system calls (read, write, fork, ...)
— OOP I1dea: these are the kernel’s interface

— Processes access devices just like files — that’s
how they are represented by the kernel, and
they occupy places in the file system

e Use open, close, read, write, release, seek, ...

e Or Indirectly, by using shell commands or
libraries/programs that use system calls

Linux file system

e Rooted,
hierarchical

— Data files are
stored In

directories

® A ﬁle’s (fU”) User home
pathname directories
starts at the
root

— [etc/passwd
— /home/neale/b

Directories ———

Some ““big picture” ideas

A simple computer model

computer

display and

) progra keyboard

printer

This and the next six figures derived from B. Molay’s Understanding Unix/Linux Programming, Pearson 2003.

An example program

#include <stdio.h>
int main(void) {
int c;
while ((c = getchar()) !'= EOF)
putchar(c);

More realistic computer model

How connected? Not like this!

OS manages everything!

prograims

Operating System

OOP idea: OS provides
services

User Iinterface iIs the shell

Shell

e A program that runs in a terminal and
provides a command-line interface for user

e An Interpreter that executes user
commands

e Also a powerful programming language
— Shell script — a sequence of commands in a file

e Lots of different shells to choose from

— sh, csh, tcsh, bash ...
— We'll focus on bash (and sh scripts) in this course

Special file names

e _ (by itself) The current directory
— ./alsthe same as a
e __ The parent (toward root) directory
— . ./jane/x go up one level then look In

directory named jane for x
e ~ Your home directory
— ~harvey Username harvey’s home directory

e Have to “escape” spaces with a backslash
— my\ file\ name\ with\ spaces

— Moral: don’t use spaces in file or directory names!

Starting Reader #2

ODbject-oriented perspective

Operating system = computer interface

Shell/libraries/system calls = OS interface

Will return to OS topics
(processes, ...) In upcoming
lectures. Now: OO intro.

Objects

e Include things
— Stack, queue, list, ...
— Window, spaceship, recipe, ...
e Also include concepts
— Power, trajectory, mood, ...
e Can represent people, places, roles, ...

e In programming: an object Is a software
entity encapsulating data and/or methods

Imperative programming (not OOP)

e Data, and the operations that manage the data are
separate entities (physically and logically)

1=

e \What are implications of this programming style?

Kay’s Description of OOP

Everything Is an object.

Objects perform computations by making
requests of each other through the passing of
messages.

Every object has its own memory, which
consists of other objects.

Every object is an Instance of a class. A class
groups similar objects.

The class Is the repository for behavior
assoclated with an object.

Classes are organized into a singly-rooted tree
structure, called an inheritance hierarchy.

Alan Kay:
“Simple
things
should be
simple,
complex
things
should be
possible.”

Solving problems with objects

e First decide what objects are needed

— Instead of what functions are required

— And instead of how specifically to handle data
hen give each object responsibilities

— Which probably include storing some data and
performing some functions

e Finally, have objects interact by sending
messages (usually method calls) to one another

— 1.e., they collaborate to fulfill responsibilities

Budd’s “real life” example

e Budd decides to send flowers to his grandmother

e First he selects an agent: Flo, a capable florist
— Then he sends a message to Flo — not unlike:
flo.sendBouquet(l, &grandma);
e The next step Is Flo’s responsibility
— Budd does not participate in this part of the process
— Likely that many other agents do participate though!
e Finally Flo probably sends a message to Budd:
budd.pay(bouquetPrice, this);

Elements of OOP - Objects

e 1. Everything Is an object

— Actions in OOP are performed by agents, called
Instances or objects.

e Several agents In the example scenario, including
Budd, Grandma, Flo, the florist in Grandma’s
city, driver, flower arranger, grower
— Each agent has a part to play, and the result is

produced when all work together in the solution of a
problem.

Elements of OOP - Messages

e 2. Objects perform computations by making
requests of each other through the passing of
messages.

— Actions in OOP are produced in response to requests
for actions, called messages. An instance may accept a
message, and in return will perform an action and
return a value.

e To begin the process of sending the flowers,
Budd gives a message to Flo. She in turn gives a
message to the florist in Grandma’s city, who
gives another message to the driver, and so on.

