
Simplest version of DayOfYear
Like a struct with
an added method
– All parts public
– Clients access

month, day
directly

class DayOfYear {
public:

void output();
int month;
int day;

};
void DayOfYear::output() {

cout << "month = " << month
<< ", day = " << day << endl;

}

Reminder from last week:

What's wrong with DayOfYear?

Most important: data are exposed to users
Why is that a problem?
Two major reasons:
– No way to insure consistent object states – e.g.

user could birthday.month = 74; // huh?
– Developer can't change data names/meanings

– e.g. can't change int to string for month,
can't save Date instead of month, day, …

What's the solution (in C++)?

An access specifier: private

Private members of a class can only be
referenced within the definitions of member
functions (and friends – later)
– If the program tries to access a private member, the

compiler gives an error message
Private members can be data or functions
– Should have public set methods to change data
– Need public get methods to access the data

Btw: default for class is private (public for struct)

Better class DayOfYear
class DayOfYear {
public:

void input();
void output();
void set(int new_month, int new_day);
int get_month();
int get_day();

private:
void check_date();
int month;
int day;

};
DISPLAY 10.4

Creating and assigning (=) objects

Declaring an object creates the object
DayOfYear today, tomorrow;

// two objects are created on stack
Different if declaring pointers (or references)
DayOfYear *soon, &r = today; // no object
soon = new DayOfYear; // now object on heap

Assignment operator copies object’s data
r = *soon; // no new object–just copy on stack

// original (today) object data overwritten

Another class
example:
BankAccount

Has operations
appropriate for a
bank account
(implemented with
public member
functions)
– And a private

utility function
Stores an account
balance and an
interest rate 2 objects created

Method
overloading –
BankAccount::set

A method's signature
includes its name and
its parameter list
Can overload a name
like set with a different
parameter list
– Number, types, order

More implementing BankAccount

Using stream manipulators

Sample BankAccount results
// excerpts from main:

account1.set(123,99,3);
// called with all 3 arguments

account1.set(100,5);
// called other version of set

account1.update();

account2 = account1;

Q: What if account2.update()?

Constructors

A constructor (a.k.a. ctor) is a member function
– Usually declared public

One is always called when an object is created
Main purpose – initialize instance variables
– Also useful to allocate resources if needed

Constructor's name must be the name of the class
A constructor cannot return a value
– No return type, not even void

A BankAccount constructor
Declare in public part of class definition
BankAccount(int dollars, int cents, double rate);

Implement essentially like other methods
BankAccount::BankAccount(int dollars, int cents,

double rate) {

if ((dollars < 0) || (cents < 0) || (rate < 0)) {
cout << "Illegal values for money or rate\n";
exit(1);

}

balance = dollars + 0.01 * cents;
interest_rate = rate;

}

Constructor call is automatic

May not invoke (i.e., call) it directly:
account1.BankAccount(10, 50, 2); // ERROR

Instead invoke indirectly
– On stack: BankAccount account1(10, 50, 2);
– Or free store: … new BankAccount(10, 50, 2);

But class must have a matching constructor
– e.g., BankAccount() if just new BankAccount;

Default constructor is called – but oops: ERROR if
explicit constructor is defined and not overloaded!

Overloading and the default ctor

Another possible BankAccount ctor:
BankAccount (double balance, double interest_rate);

Or can have either one of the following. Why not both?
BankAccount (double balance);
BankAccount (double interest_rate);

Also either explicitly define default ctor:
BankAccount ();

Or implicitly via default arguments in other ctors:
BankAccount (double balance = 0.0);

Tip: good idea to always include a default ctor even if
there is no need to initialize variables

– So clients can: BankAccount checking, savings;
– Important for inheritance reasons too (a future topic)

Base/member initialization list
An initialization section in a constructor definition
provides an alternative way to initialize member variables
BankAccount::BankAccount() : balance(0), interest_rate(0)

{ } // still need a body (even if intentionally empty like this case)
– Can use parameter names too – even if same name as member!

Note: order of initialization matches the order in which the
variables are declared in the class, not their order in the list
Must use such a list for constants and reference variables
(since references are always constant)
– Also must use to initialize private data in a base class (later topic)

Should always use for user-defined types if default ctor not
appropriate – to avoid extra ctor (and destructor) calls

Back to the OS – processes

Later: on to advanced
class design (Savitch
Chapter 11)

Starting Reading #3

Processes
A process is an executable, machine language program
that the OS (Linux) has been asked to run
– Copied to memory, and assigned a process ID (PID)
– Scheduled for execution by the CPU

Processes create other processes via system calls
– A program (e.g., in C or C++) creates a new process

and terminates itself with a call to exec
– A program creates a child process by calling fork
– e.g.: $> ./myscript

First line is: #!/bin/bash
bash runs (interprets script)

Steps to execute a program (sort) Steps to execute a shell script

Process hierarchy
init – is PID 1, but all other processes have parents (so PPID)
– The process hierarchy's depth is limited only by available

virtual memory
A process may control the execution of any of its descendants
– Can suspend or resume it
– Can alter its relative priority
– Can even terminate it completely

By default, terminating a process will terminate all of its
descendants too
– So terminating the root process will terminate the session

Example Linux process hierarchy

(From Linux-specific version of Sarwar et al. text)

Linux process states
Just one
process can be
"running" at
any one time
OS has other
processes in
various states
A process
may be cycled
through many
states before it
terminates

Meanings of Linux process states

More
states

From: Bulletproof
Unix by Tim
Gottleber, 2003

Foreground and background
When a command is executed from the prompt and runs
to completion at which time the prompt returns, it is said
to run in the foreground
When a command is executed from the prompt followed
by the token '&' on the command line, the prompt
immediately returns while the command is said to run in
the background
Programs that interact with a user should be run in the
foreground
Programs that execute slowly and without intervention
belong in the background – so other work can get done!
– e.g., daemons (background processes for system administration)

User control of process state
Terminate a foreground process with ctrl-C
Send running foreground process to background by ctrl-Z
-bash-4.2$ find / *.txt > /dev/null 2> /dev/null

entered ctrl-Z here
[1]+ Stopped find / *.txt > /dev/null 2> /dev/null
-bash-4.2$ can execute more commands while find works
– If enter fg 1 now, job 1 will execute in foreground again

Use ps to find PIDs of running processes
-bash-4.2$ ps
PID TTY TIME CMD

20637 pts/4 00:00:00 bash
21581 pts/4 00:00:02 find
21632 pts/4 00:00:00 ps

Terminate a background process with kill command
bash-4.2$ kill -9 21581 -9 is the "sure kill" signal number
-[1]+ Killed find / *.txt > /dev/null 2> /dev/null

Fields of ps -l output (cont. next slide)

Fields of ps -l output (cont.)

next slide.

Process state abbreviations

