
Managing dynamic memory

Constructor (usually) allocates it
StringVar(const char a[]);
...
StringVar::StringVar(const char a[]) :

max_length(strlen(a)) {

value = new char[max_length + 1];

strcpy(value, a);

}

But what happens when the object is destroyed?
StringVar s1("hot"); // on stack, will go out of scope soon

Solution is to define a destructor (a.k.a. dtor)

Destructors - dtors
A dtor is invoked whenever an object goes out of
scope, or by delete for objects on free store
– Compiler supplies a default one if you don’t
– Default won’t free dynamic memory or other resources

Defined like a ctor, but with a ~ in front, and it
may not take any arguments
~StringVar();
...
StringVar::~StringVar() { delete [] value; }

Can invoke directly on an object (unlike ctors)
stringPtr->~StringVar(); // rarely done though

Manager functions (inc. Big 3)
4 functions every class must properly manage:
– Default ctor, copy ctor, dtor, and assignment operator

Compiler supplies defaults of all 4, but often should redefine
– Latter three also known as “The Big Three” – if you need to

redefine one of them, then you need to redefine all three of them
Copy ctor – StringVar(const StringVar&);
– Compiler-supplied version makes a “shallow copy”
– Invoked when initializing with object as argument:
StringVar s(otherString);

Or by “C-style” syntax: StringVar s = otherString;
– Also invoked to pass (or return) an object by value to

(or from) a function

Implementing StringVar copy ctor
Question: why not just keep the default copy ctor
for StringVar objects?
Ans: Need a complete, independent copy of the
argument – even if the argument is *this
– Therefore must create new dynamic array, and copy

all characters to the new array
StringVar::StringVar(const StringVar& other) :

max_length(other.length()) {
value = new char[max_length + 1];
strcpy(value, other.value);

}

See 11-11.cpp and 11-12.cpp (also in ~mikec/cs32/Savitch/Chapter11/)

Why redefine the = operator?

Given these declarations:
StringVar s1("cat"), s2("rabbit");

The following statement is legal:
s1 = s2;

But without redefining operator=, we would
have s1.value and s2.value both pointing to the
same memory location (a "shallow copy")

– Furthermore, s1’s old value is now a memory leak
So: StringVar& StringVar::operator=

(const StringVar& right);

Defining operator= [version 1]
The definition of = for StringVar could be as follows:

StringVar& StringVar::operator=
(const StringVar& right){

int new_length = strlen(right.value);
if ((new_length) > max_length)

new_length = max_length;

for(int i = 0; i < new_length; i++)
value[i] = right.value[i];

value[new_length] = '\0';
}

Notice anything wrong with this version?

Defining operator= [version 2]
StringVar& StringVar::operator=

(const StringVar& right){
delete[] value;
int new_length = strlen(right.value);
max_length = new_length;
value = new char[max_length + 1];

for(int i = 0; i < new_length; i++)
value[i] = right.value[i];

value[new_length] = '\0';
}

That solves problem of incompletely copied strings, but …
What if somebody uses it as follows? s1 = s1;

Defining operator= [finally?]
Idea is to delete value only if more space needed:

StringVar& StringVar::operator=
(const StringVar& right){

int new_length = strlen(right.value);
if (new_length > max_length) {

delete[] value;
max_length = new_length;
value = new char[max_length + 1];

}
for(int i = 0; i < new_length; i++)

value[i] = right.value[i];
value[new_length] = '\0';

}

Demos: advanced class design

~mikec/cs32/demos/IntArray/ files
– Mostly about dealing with objects pointing to

dynamic memory
~mikec/cs32/demos/String/ files
– Full-featured string-like class, with many

overloaded operators and other functions that
are not part of the textbook’s StringVar class

About building a program so
Linux (the OS) can run it

Starting to learn what gcc/g++ does
(learn how to use g++ in labs)

Based on Reading #5

Program building
Have: source code – human readable instructions
Need: machine language program – binary
instructions and associated data regions, ready to
be executed
g++/gcc does two basic steps: compile, then link
– To compile means translate to object code
– To link means to combine with other object code

(including library code) into an executable program

Compile Linkmypgm.cpp
(source code)

mypgm
(executable)

mypgm.o
(object code)

Link combines object codes
From multiple source files and/or libraries
– e.g., always libc.a

Use -c option with gcc/g++ to stop after creating .o file
-bash-4.2$ gcc -c mypgm.c ; ls mypgm*
mypgm.c mypgm.o

– Is necessary to compile a file without a main function
Later link it to libraries – alone or with other object files:

-bash-4.2$ gcc -o mypgm mypgm.o ; ls mypgm*
mypgm mypgm.c mypgm.o

Compile Link

Link

mypgm.c
(source code)

mypgm
(executable)

mypgm.o
(object code)

libc.a
(library file)

Compiling: 3 steps with C/C++

First the preprocessor runs
– Creates temporary source code with text substitutions as directed
– Use gcc -E (or just cpp) to run it alone – output goes to stdout

Then the source is actually compiled to assembly code
– Use gcc -S to stop at this step and save code in .s file

Last, assembler produces the object code (machine language)

"Compile"

Preprocess Assemble

Compile

mypgm.c
(source code)

mypgm.o
(object code)

(source code
with preproc.
subsitutions)

mypgm.s
(assembly

code)

Automate builds with make
(a short intro to Lab06)

make is a Unix/gnu tool that executes actions as
necessary to satisfy dependencies
First create a "Makefile" (learn tips in Lab06 and Hw6)

pgm: pgm.o # dependency
gcc pgm.o –o pgm # action (tab required)

pgm.o: pgm.c
gcc -c pgm.c

Why bother learning, and using the make tool?
– Some projects have many, many modules; even many

programmers. Automated, so guarantees complete and
up-to-date builds, without needless steps.

– Just type "make” – the program does the rest

