Managing dynamic memory

e Constructor (usually) allocates it
StringVar(const char a[]);

StringVar::Stringvar(const char a[]) :
max_length(strlen(a)) {
value = new char[max_length + 1];
strcpy(value, a);
3
e But what happens when the object is destroyed?
Stringvar s1(''hot'); // on stack, will go out of scope soon

e Solution is to define a destructor (a.k.a. dtor)

Destructors - dtors

e A dtor is invoked whenever an object goes out of
scope, or by delete for objects on free store

— Compiler supplies a default one if you don’t

— Default won't free dynamic memory or other resources
o Defined like a ctor, but with a ~ in front, and it

may not take any arguments

~Stringvar();

éil:ingVar: :~Stringvar() { delete [] value; }
e Can invoke directly on an object (unlike ctors)

stringPtr->~Stringvar(); // rarely done though

Manager functions (inc. Big 3)

e 4 functions every class must properly manage:
— Default ctor, copy ctor, dtor, and assignment operator
e Compiler supplies defaults of all 4, but often should redefine
— Latter three also known as “The Big Three” — if you need to
redefine one of them, then you need to redefine all three of them
e Copy ctor — Stringvar(const Stringvaré&);
— Compiler-supplied version makes a “shallow copy”
— Invoked when initializing with object as argument:
StringVar s(otherString);
e Or by “C-style” syntax: Stringvar s = otherString;
— Also invoked to pass (or return) an object by value to
(or from) a function

See 11-11.cpp and 11-12.cpp (also in ~mikec/cs32/Savitch/Chapter11/)

Implementing StringVar copy ctor

e Question: why not just keep the default copy ctor
for StringVar objects?

e Ans: Need a complete, independent copy of the
argument — even if the argument is *this

— Therefore must create new dynamic array, and copy
all characters to the new array
StringVar::StringVar(const StringVaré& other) :
max_length(other.length(Q)) {
value = new char[max_length + 1];
strcpy(value, other.value);

Why redefine the = operator?

e Given these declarations:

StringvVar si1(“cat"), s2(“rabbit");

e The following statement is legal:
sl = s2;

e But without redefining operator=, we would
have sl.value and s2.value both pointing to the
same memory location (a "shallow copy")

— Furthermore, s1’s old value is now a memory leak

e So0: Stringvar& Stringvar: :operator=

(const StringVaré& right);

Defining operator= [version 1]

e The definition of = for StringVar could be as follows:
StringVar& StringVar::operator=
(const Stringvar& right){

int new_length = strlen(right.value);
it ((new_length) > max_length)
new_length = max_length;

for(int i = 0; i < new_length; i++)
value[i] = right.value[i];
value[new_length] = *\0*;
¥
e Notice anything wrong with this version?

Defining operator= [version 2]

StringVar& StringVar::operator=
(const StringVaré& right){
delete[] value;
int new_length = strlen(right.value);
max_length = new_length;
value = new char[max_length + 1];

for(int i = 0; 1 < new_length; i++)
value[i] = right.value[i];
value[new_length] = *\0*;

e That solves problem of incompletely copied strings, but ...
e What if somebody uses it as follows? s1 = si1;

Defining operator=[finally?]

e Idea is to delete value only if more space needed:
StringVar& Stringvar::operator=
(const StringVar& right){
int new_length = strlen(right.value);
if (new_length > max_length) {
delete[] value;
max_length = new_length;
value = new char[max_length + 1];
3
for(int i = 0; i < new_length; i++)
value[i] = right.value[i];
value[new_length] = "\0~;

Demos: advanced class design

e ~mikec/cs32/demos/IntArray/ files
— Mostly about dealing with objects pointing to
dynamic memory
e ~mikec/cs32/demos/String/ files
— Full-featured string-like class, with many
overloaded operators and other functions that
are not part of the textbook’s StringVar class

About building a program so
Linux (the OS) can run it

Starting to learn what gcc/g++ does
(learn how to use g++1n labs)

Based on Reading #5

Program building

e Have: source code — human readable instructions

e Need: machine language program — binary
instructions and associated data regions, ready to
be executed

e g++/gcc does two basic steps: compile, then link
— To compile means translate to object code

— To link means to combine with other object code
(including library code) into an executable program

mypgm.cpp Compile mypgm.o Link mypgm
(source code) (object code) (executable)

Link combines object codes

e From multiple source files and/or libraries

— e.g., always libc.a
mypgm.c Compile mypgm.o Link mypgm
(source code) (object code) (executable)
libc.a Link
(library file)

e Use -c option with gcc/g++ to stop after creating .o file
-bash-4.2% gcc -c mypgm.c ; Is mypgm*
mypgm.c mypgm.o
— Is necessary to compile a file without a main function
e Later link it to libraries — alone or with other object files:
-bash-4.2% gcc -o mypgm mypgm.o ; Is mypgm*
mypgm mypgm.c mypgm.o

Compiling: 3 steps with C/C++

mypgme | _________[comele . mypgm.o
(source code) (object code)

Preprocess (source code mypgm.s Assemble
with preproc. St (assembly
subsitutions) ompile code)

e First the preprocessor runs
— Creates temporary source code with text substitutions as directed
— Use gcc -E (or just cpp) to run it alone — output goes to stdout
e Then the source is actually compiled to assembly code
— Use gcc -S to stop at this step and save code in . s file

e Last, assembler produces the object code (machine language)

Automate builds with make
(a short intro to Lab06)

e make is a UniX/Ps u tool that executes actions as
necessary to sat ?y dependencies

o First create a "Makefile" (learn tips in Lab06 and Hw6)
pgm: pgm.o # dependency

gcc pgm.o —o pgm # action (tab required)
pgm.o: pgm.c
gcc -c pgm.c
e Why bother learning, and using the make tool?

— Some projects have many, many modules; even many
programmers, Automated, so %uarantees complete and
up-fo-date builds, without needless steps.

— Just type "make” — the program does the rest

