
Third ExamThird Exam
Monday, May 20Monday, May 20

Simpler polymorphism demo Simpler polymorphism demo
((~mikec/cs32/demos/figures~mikec/cs32/demos/figures))

Base: Figure has virtual void print()
– print() is used in printAt(lines)

Derived: Rectangle just overrides print()
Which print() is used in the following code?
Figure *ptr = new Rectangle,

&ref = *new Rectangle('Q', 5, 10, 4);
ptr->printAt(1); ref.printAt(1);

What if print() was not declared virtual?
What if line 2 above just had ref, not &ref?
– To know why, see “slicing” … a few slides from now

““Pure virtualPure virtual”” and abstract classesand abstract classes

Actually class Figure’s print() function is useless
– It should have been a pure virtual function:
virtual void draw() const = 0;

– Says not defined in this class – means any derived
class must define its own version, or be abstract itself

A class with one or more pure virtual functions is
an abstract class – so it can only be a base class
– An actual instance would be an incomplete object
– So any instance must be a derived class instance

TypesTypes when inheritance is involvedwhen inheritance is involved

Consider: void func (Sale &x) {…} or
similarly: void func (Sale *xp) {…}
– What type of object is x (or *xp), really? Is it a Sale?
– Or is it a DiscountSale, or even a CrazyDiscountSale?

Just Sale members are available
– But might be virtual, and Sale might even be abstract
– & and * variables allow polymorphism to occur

Contrast: void func (Sale y) {…}
– What type of object is y? It’s a Sale. Period.
– Derived parts are “sliced” off by Sale’s copy ctor
– Also in this case, Sale cannot be an abstract class

Type compatibility exampleType compatibility example
Consider:
Dog d; Pet p;
d.name = "Tiny";
d.breed = "Mutt";
p = d; // “slicing” here
– All okay – a Dog “is a” Pet

Reverse is not okay
– A Pet might be a Bird, or …

And p.breed? Nonsense!
Also see slicing.cpp at
~mikec/cs32/demos/

class Pet {
public: // pls excuse bad info hiding

string name;
virtual void print();

};

class Dog : public Pet {
public:

string breed;
virtual void print();

};

Destructors should be virtualDestructors should be virtual

Especially if class has virtual functions
Derived classes might allocate resources
via a base class reference or pointer:
Base *ptrBase = new Derived;

... // a redefined function allocates resources
delete ptrBase;

If dtor not virtual, derived dtor is not run!
If dtor is virtual – okay: run derived dtor,
immediately followed by base dtor

Casting and inherited typesCasting and inherited types
Consider again: Dog d; Pet p;
“Upcasting” (descendent to ancestor) is legal:
p = d; // implicitly casting “up”
p = static_cast<Pet>(d); // like (Pet)d
– But objects sliced if not pointer or reference

Other way (“downcasting”) is a different story:
d = static_cast<Dog>(p); // ILLEGAL
– Can only do by pointer and dynamic cast :
Pet *pptr = new Dog; // we know it’s a Dog
Dog *dptr = dynamic_cast<Dog*>(pptr)
– But can be dangerous, and is rarely done

Multiple inheritance and virtualMultiple inheritance and virtual
Idea: a ClockRadio is a Radio and an AlarmClock
– But what if class Radio and class AlarmClock are both derived

from another class, say Appliance?
– Doesn’t each derived object contain an Appliance portion?
– So wouldn’t a Clockradio have two copies of that portion, and

how can such a scheme possibly work properly?
Answer: it can work, but only by using virtual inheritance!
class Radio : virtual public Appliance;
class AlarmClock : virtual public Appliance;
class ClockRadio : public Radio, public AlarmClock;
– Now a Clockradio has just one Appliance portion, not two

See demo code in ~mikec/cs32/demos/multi-inherit
But note: hierarchy is still messed up, and still lots of
chances for ambiguity – best to avoid multi-inheritance!

How do virtual functions work?How do virtual functions work?
Not exactly magic, but safe to consider it so
virtual tells compiler to “wait for instructions”
until the function is used in a program
So the compiler creates a virtual function table for
the class, with pointers to all virtual functions
In turn, every object of such a class will be made
to store a pointer to its own class’s virtual function
table – try …/demos/sizeofvirtual.cpp
At runtime: follow the pointers to find the code!

Memory and C/C++ modulesMemory and C/C++ modules
From Reading #6

Will return to OOP topics
(templates and library tools) soon

Compilation/linking revisitedCompilation/linking revisited
source
file 1

source
file 2

source
file N

object
file 1

object
file 2

object
file N

library
object
file 1

library
object
file M

load
file

linking
(relocation +

linking)
compilation

Usually performed by gcc/g++ in one uninterrupted sequence

Layout of C/C++ programsLayout of C/C++ programs

Source code

… becomes

Object
module

object 1 definition
object 2 definiton

object 4 definition

object 3 definition

...
...

...
...

static object 5 definition

function 1

function 2

static object 5 definition

function 3

Header section

Machine code section
(a.k.a. text section)

Initialized data section

Symbol table section

Relocation information
section

A sample C program A sample C program –– demo.cdemo.c
Has text section
of course: the
machine code
Has initialized
global data: a
Uninitialized
global data: b
Static data: k
Has a local
variable: i

#include <stdio.h>

int a[10]={0,1,2,3,4,5,6,7,8,9};
int b[10];

void main(){
int i;
static int k = 3;

for(i = 0; i < 10; i++) {
printf("%d\n",a[i]);
b[i] = k*a[i];
}

}

A possible structure of demo.oA possible structure of demo.o
Offset Contents Comment
Header section
0 124 number of bytes of Machine code section
4 44 number of bytes of initialized data section
8 40 number of bytes of Uninitialized data section (array b[])

(not part of this object module)
12 60 number of bytes of Symbol table section
16 44 number of bytes of Relocation information section
Machine code section (124 bytes)
20 X code for the top of the for loop (36 bytes)
56 X code for call to printf() (22 bytes)
68 X code for the assignment statement (10 bytes)
88 X code for the bottom of the for loop (4 bytes)
92 X code for exiting main() (52 bytes)
Initialized data section (44 bytes)
144 0 beginning of array a[]
148 1
:
176 8
180 9 end of array a[] (40 bytes)
184 3 variable k (4 bytes)
Symbol table section (60 bytes)
188 X array a[] : offset 0 in Initialized data section (12 bytes)
200 X variable k : offset 40 in Initialized data section (10 bytes)
210 X array b[] : offset 0 in Uninitialized data section (12 bytes)
222 X main : offset 0 in Machine code section (12 bytes)
234 X printf : external, used at offset 56 of Machine code section (14 bytes)
Relocation information section (44 bytes)
248 X relocation information

Object module
contains neither
uninitialized
data (b), nor
any local
variables (i)

