
Defining class templates
Idea: “generalize” data that can be managed by a class
template<typename T>
class Pair {
public:

Pair();
Pair(T firstVal, T secondVal);
void setFirst(T newVal);
void setSecond(T newVal);
T getFirst() const;
T getSecond() const;

private:
T first; T second;

};

Reminder from last week …

Class template member functions

All methods need template prefix – e.g., constructor:
template<class T>
Pair<T>::Pair(T val1, T val2)

: first(val1), second(val2) { }

Similarly setter and getter functions:
template<class T>
void Pair<T>::setFirst(T newVal)
{ first = newVal; }
template<class T>
T Pair<T>::getFirst() const { return first; }

See ~mikec/cs32/demos/templates/complex example

Note: each
function
definition
is itself a
template

More class template notes

Mostly design just like any class
– Can have friends – usually do
– Can be a base class or a derived class

Careful though: MyTemplate<T1> ≠ MyTemplate<T2>

– That is, there is no inheritance or any other kind of
formal relationship between the two classes

e.g., cannot cast an object of one to an object of the other

– Why?
Compiler defines completely different classes!

Class templates in OO design
An alternative to using an inheritance hierarchy
– More flexible, as template classes stand alone
– More efficient than using virtual functions

Both are ways to have objects with independent
behaviors, but all sharing a common interface
The STL is mostly template classes and functions
– Ditto the Java Collections Framework by the way

Even a string is actually a specialization of a
template, defined as follows in namespace std:
– typedef basic_string<char> string;
– Also: typedef basic_string<wchar_t> wstring;

std::string

Encapsulates a sequence of characters
– i.e., much more object-oriented than (char *)

Both a size and a capacity (for efficiency)
– Both are mutable, and so are the characters

Member operator functions =, +=, []
Others include substr, insert, compare, clear, …
Nonmember: op<<, op>>, getline, op+, op==, …
See http://www.cplusplus.com/reference/string/ and
librarytools.cpp::stringDemo() in
~mikec/cs32/demos/templates/

Starting Savitch Chapter 18

Standard template library (STL)
A framework of generic containers and algorithms
– STL containers are class templates – for storing and

accessing parameterized data types
– STL algorithms are function templates – mostly

involving contents of STL containers
Iterators are the framework’s linchpins
– Essentially pointers to container elements

In fact, pointers into arrays usually qualify for the functions
– Each container type has a set of possible iterators
– The algorithms access container elements using these

iterators – so their use is standardized across containers

STL sequence containers
vector<typename> – basically a smart array
– Overloaded [] makes it seem like an array once created
– But unlike arrays, vectors grow dynamically as required, and

have methods like size(), empty(), clear(), insert(), …
list<typename> – a double-linked list
– Best feature: quick insertion and removal of elements
– But no random access – must settle for using bi-directional

iterators that provide access relative to existing elements
deque<typename> – a vector/list combination
See three related demo functions in librarytools.cpp

Adaptive sequence containers

Underlying data structure is another sequence
– With access restricted in some defined way
stack<typename> – LIFO access
– Basic operations are push(), pop(), and top()
queue<typename> – FIFO access
– Operations are push(), pop(), and front()
priority_queue<typename>

– push(), pop(), and top() (more like a stack than a queue)
But pop() and top() access “highest priority” element

Associative containers

Designed for accessing data by search keys
– Main feature – quick insert()and find() operations

Sets – the data are the keys
– set<typename, functor> – no duplicates allowed

The “functor” (function object) is used to order the elements

– To have duplicates: multiset<typename, functor>
Maps – elements are key/data pairs
– map<keyT, dataT, functor>, or allow duplicates

with multimap< keyT, dataT, functor>

STL algorithms
Function templates – mostly work with iterators
– Idea – alternative to algorithms built into containers

Facilitates consistent handling of the various containers
Usual: alg(iterBegin, iterEnd, other args)
– e.g., fill(vector.begin(), vector.end(), 0);
– e.g., random_shuffle(v.begin(), v.end());
– Demos: ~mikec/cs32/demos/templates/librarytools.cpp

Complete STL documentation available online
at http://www.cplusplus.com/reference/stl/ and
http://www.sgi.com/tech/stl/ and elsewhere

Libraries
What is a library?
– A compiled, packaged collection of often-used code

Why libraries?
– Convenient – already compiled; use again and again
– Often allow for hardware/system-independent

programming – i.e., simpler and more “portable” code
Examples galore: C and C++ standard libraries,
plus STL, graphics libraries, …
Sometimes want to create your own libraries
– Package together functions, related classes, class

hierarchies, templates – all ready for later use

Starting Reading #7
(Notice how the two course streams have met!)

Making a library
ar – Unix command to create an “archive” file
– Mostly works like tar – to manage a package of files

% ls *.o
tool1.o tool2.o tool3.o

% ar q libtools.a *.o /* add all .o files to archive - quickly */
[% ranlib libtools.a] /* necessary for Berkeley Unix only */

Now just link a program to the library (in ‘.’):
% g++ -Wall -o mypgm mypgm.c –ltools –L.

Add/replace objects: ar r libtools.a xx/tool4.o

Just read archive table of contents and other info:
% ar tv libtools.a

Graphics libraries
OOP idea: encapsulate calls
to graphics (hardware) devices
– Provide a common interface –

for using graphics on a wide
variety of systems and devices

What’s the alternative?
– Calling system and device

driver-specific routines
– Not simple, and not portable

Application
program

Graphics
library

Operating
system

Graphics
display

Curses library
Very basic graphics library to control the
display of characters on a terminal screen
– Not what most people call graphics, but cool
– Without it, can only “print” to screen line by line

Source must: #include <curses.h>
Tell g++/gcc to link: -lncurses
Then uses curses functions to open a window,
and show any character anywhere inside it
– e.g., ~mikec/cs32/demos/curses/rogue5.4.4

Animating graphics
Basic idea: move a drawing around screen
Three essential steps to dynamic graphics –
repeated over and over again in order

1. Erase (or draw “blank” over) current drawing
2. Move to new, nearby location, and redraw (making

sure drawing happens by flushing the buffer)
3. Pause (“sleep”) so user can see drawing
– Then go back to step 1 … and continue forever, or

until animation is completed
Speed of the animation is controlled by how
long step 3 lasts – can vary for various parts

Fourth Exam
Friday, June 7

