
Table ADT and Sorting
Algorithm topics continuing (or
reviewing?) CS 24 curriculum

A table ADT (a.k.a. Dictionary, Map)
Table public interface:

 // Put information in the table, and a unique key to identify it:
 bool put(KeyType key, ItemType info);

 // Get information from the table, according to the key value:
 ItemType get(KeyType key);
 // Update information that is already in the table:
 bool update(KeyType key, ItemType newInfo);
 // Remove information (and associated key) from the table:
 bool remove(KeyType key);

 // Above methods return false if unsuccessful (except get returns null)
 // Print all information in table, in the order of the keys:
 void printAll();

Table implementation options

l  Many possibilities – depends on application
–  And how much trouble efficiency is worth

l  Option 1: use a BST
–  To put: insertTree using key for ordering
–  To update: deleteTree, then insertTree
–  To printAll: use in-order traversal

l  Option 2: use sorted array with binary searching
l  Option 3: implement as a “hash table”

Hashing ideas and concepts
l  Idea: transform arbitrary key domain (e.g.,

strings) into “dense integer range”
–  Then use result as index to table
–  int index = hash(key); // transform key to int

l  Collisions: hash(k1)==hash(k2), k1 != k2
–  Usually impossible to avoid (“perfect hashing” rare)
–  Therefore, must have a way to handle collisions

l  e.g., if using “open addressing” techniques -
while (occupied(index)) index = probe(key);

l  Concept: insertion/searching is quick – but only
until the table starts to get filled up
–  Then collisions start happening too often!

Implementing a hash table

l  Constructor allocates memory for array of items,
and initializes all items to “empty” key
–  size is size of array
–  n is the number of items in the table
–  Load factor is n / size

l  put method uses hash(key) (and probe(key)if open
address hashing) to find empty slot for new item
–  May be necessary to resize array

l  If so, also necessary to rehash existing items
l  If open address hashing, resize when load factor > 50%

Open address hashing
l  get & update methods use hash(key) and
probe(key) in exact same sequence as put
–  To find existing info where it was put

l  remove is more complicated
–  Cannot just remove an item – future probes for get

and update might terminate prematurely at empty slot
l  Common trick is to have “deleted” key

–  Problem with that is table can seem full prematurely
l  Inefficient alternative rehashes all items when any removed

l  Note: to printAll in key order – must sort first
–  So O(n log n) at best!

Hash functions
l  Goal: uniform distribution of keys

–  Means each index of table is equally likely
–  Important for reducing collisions

l  Common approach is a restricted transformation
–  Step 1 – transform key to large integer
–  Step 2 – restrict integer to 0…size-1

l  Usually done with modulus operator - %
l  Lots of variations – partly depends on key type

–  General observation: hard to find a good hash function
–  Note: should be “cheap” to compute too – e.g.,

division is slower on most CPUs than addition

Resolving collisions
l  Simplest open address approach is linear probing

–  If (index = hash(key)) is not empty, try index+1,
then index+2, …, until empty slot

l  Note: searching for first “open address”
–  Leads to “primary clusters” – collisions bunch up

l  Quadratic probing – vary probe, like 1, 3, 6, …
–  Leads to “secondary clusters” but not as quickly

l  Double hashing – probe(key) varies by key
–  Best open addressing approach for avoiding clusters

l  Or completely different approach – “chaining”

Chaining
l  Constructor allocates memory for array of Lists, and

creates an empty list for each element of the array
l  put method uses hash(key) and appends to end of list at

that index of array
–  Still should resize when load factor approaches 80%

l  Clustering is not a problem, but long lists slow performance
l  remove method is easier now – just delete from list
l  But lots more overhead than open addressing

–  Must store node links as well as key and info
–  Use list method calls instead of direct array access

Sorting
l  Probably the most expensive common operation
l  Problem: arrange a[0..n-1] by some ordering

–  e.g., in ascending order: a[i-1]<=a[i], 0<i<n
l  Two general types of strategies

–  Comparison-based sorting – includes most strategies
l  Apply to any comparable data – (key, info) pairs
l  Lots of simple, inefficient algorithms
l  Some not-so-simple, but more efficient algorithms

–  Address calculation sorting – rarely used in practice
l  Must be tailored to fit the data – not all data are suitable

Selection sort

l  Idea: build sorted sequence at end of array
l  At each step:

–  Find largest value in not-yet-sorted portion
–  Exchange this value with the one at end of unsorted

portion (now beginning of sorted portion)
l  Complexity is O(n2)– but simple to program
l  Also best way to find kth largest, or top k values

largest

 sorted

Heap sort
l  Another priority queue sorting algorithm

–  Note about selection sort: unsorted part of array is like
a priority queue – remove greatest value at each step

–  Also recall that heaps make faster priority queues
l  Idea: create heap out of unsorted portion, then

remove one at a time and put in sorted portion
l  Complexity is O(n log n)

–  O(n) to create heap + O(n log n) to remove/reheapify
l  Note proof: O(n log n) is the fastest possible

class of any comparison-based sorting algorithm
–  But constants do matter – so some are faster than others

in practice

Insertion sort
l  Generally “better” than other simple algorithms
l  Inserts one element into sorted part of array

–  Must move other elements to make room for it

current

l  Complexity is O(n2) (code)

–  But runs faster than selection sort and others in its class
–  Really quick on nearly sorted array

l  Often used to supplement more sophisticated sorts

Divide & conquer strategies
l  Idea: (1) divide array in two; (2) sort each part;

(3) combine two parts to overall solution
l  e.g., mergeSort

if (array is big enough to continue splitting) à
 divide array into left half and right half;
 mergeSort(left half);
 mergeSort(right half);
 merge(left half and right half together);
else à sort small array in a simpler way

– Cost each time to merge two halves is O(n),
and overall complexity is O(n log n)

– But notice it also uses 2n space
– Commonly used to sort large files (i.e., when there

are too many records to load all of them into memory at once)

Quick sort
l  Invented in 1960 by C.A.R. Hoare

–  Studied extensively by many people since
–  Probably used more than any other sorting algorithm

l  Basic (recursive) quicksort algorithm:
if (there is something to sort)
{ partition array;
 sort left part;
 sort right part; }

–  All the work is done by partition (a.k.a. split) function
–  And there is no need to merge anything at the end

Partitioning (for quickSort)

l  Done by performing two series of “scans”
scan from (i = left) until a[i] >= pivot;

scan from (j = right) until a[j] <= pivot;
swap a[i] and a[j], and continue both scans;

stop scanning when i >= j; (code)

all <= pivot all >= pivot
pivot

l  Arrange so elements in the two sub-arrays are on correct
side of a pivot element
–  Also means pivot element ends up in its final position

Quick sort (cont.)

l  Complexity is O(n log n) on average
–  Fastest comparison-based sorting algorithm
–  But overkill, and not-so-fast with small arrays

– Um … what about a small partition?!
–  One optimization applies insertion sort for partitions

smaller than than 7 elements
l  And worst case is O(n2)!

–  Depends on initial ordering and choice of pivot
l  Btw: C library qsort, and C++ STL sort

Compare 3 table implementations
Table operation Hash table BST Sorted array

create (new table) O(n) O(1) O(n)

get, update O(1) O(log n) O(log n)

put O(1) O(log n) O(n)

remove O(1) O(log n) O(n)

printAll O(n log n) O(n) O(n)

l  Conclusion: choice depends on table purpose and size of n
l  Q. Ever want to use a sorted array?

–  A. It depends!

