Table ADT and Sorting

Algorithm topics continuing (or
reviewing?) CS 24 curriculum




A table ADT (a.k.a. Dictionary, Map)

Table public interface:
// Put information in the table, and a unique key to identify it:
bool put (KeyType key, ItemType 1info);
// Get information from the table, according to the key value:
TtemType get (KeyType key);
// Update information that is already in the table:
bool update (KeyType key, ItemType newlInfo);

// Remove information (and associated key) from the table:
bool remove (KeyType key);
// Above methods return false 1f unsuccessful (except get returns null)

// Print all information in table, in the order of the keys:
vold printAll();



Table implementation options

e Many possibilities — depends on application
— And how much trouble efficiency 1s worth
e Option 1: use a BST
— To put: insertTree using key for ordering
— To update: deleteTree, then insertTree
— To printAll: use in-order traversal
e Option 2: use sorted array with binary searching
e Option 3: implement as a “hash table”



Hashing ideas and concepts

e Idea: transform arbitrary key domain (e.g.,
strings) into  dense integer range’

— Then use result as index to table

- int index = hash (key); //transform key to int
® Collisions: hash (k1) ==hash (k2), k1l != k2

— Usually impossible to avoid (“perfect hashing” rare)

— Therefore, must have a way to handle collisions

e e.g., if using “open addressing” techniques -
while (occupied (index)) index = probe (key) ;

e Concept: mnsertion/searching is quick — but only
until the table starts to get filled up

— Then collisions start happening too often!



Implementing a hash table

e Constructor allocates memory for array of items,
and initializes all items to “empty” key

- size 1s size of array
— n 1s the number of items 1n the table
— Load factorisn / size

e put method uses hash (key) (and probe (key) if open
address hashing) t0 find empty slot for new item

— May be necessary to resize array
e If so, also necessary to rehash existing items
e If open address hashing, resize when load factor > 50%



Open address hashing

e get & update methods use hash (key) and
probe (key) In exact same sequence as put

— To find existing info where it was put

e remove 1S more complicated

— Cannot just remove an item — future probes for get
and update might terminate prematurely at empty slot

o Common trick is to have “deleted” key
— Problem with that is table can seem full prematurely
e Inefficient alternative rehashes all items when any removed

e Note: to printAll in key order — must sort first
— S0 0(n log n) at best!



Hash functions

e Goal: uniform distribution of keys
— Means each index of table 1s equally likely
— Important for reducing collisions

e Common approach 1s a restricted transformation
— Step 1 — transform key to large integer

— Step 2 — restrict integer to 0...s1ze-1
e Usually done with modulus operator - %

e Lots of variations — partly depends on key type
— General observation: hard to find a good hash function

— Note: should be “cheap” to compute too — e.g.,
division 1s slower on most CPUs than addition



Resolving collisions

e Simplest open address approach is linear probing

— If (index = hash (key)) 1s not empty, try index+1,
then index+2, ..., until empty slot
o Note: searching for first “open address”

— Leads to “primary clusters” — collisions bunch up
e (Quadratic probing — vary probe, like 1, 3, 6, ...
— Leads to “secondary clusters” but not as quickly
e Double hashing — probe (key) varies by key
— Best open addressing approach for avoiding clusters
e Or completely different approach — “chaining”



Chaining

e Constructor allocates memory for array of Lists, and
creates an empty list for each element of the array

e put method uses hash (key) and appends to end of list at
that index of array
— Still should resize when load factor approaches 80%
e Clustering is not a problem, but long lists slow performance
e remove method is easier now — just delete from list
e But lots more overhead than open addressing

— Must store node links as well as key and info
— Use list method calls instead of direct array access



Sorting

e Probably the most expensive common operation
e Problem: arrange a[0..n-1] by some ordering

— e.g., mnascending order: a [1-1]<=a[i1], 0<i<n
e Two general types of strategies

— Comparison-based sorting — includes most strategies
e Apply to any comparable data — (key, info) pairs
e Lots of simple, inefficient algorithms
e Some not-so-simple, but more efficient algorithms

— Address calculation sorting — rarely used in practice
e Must be tailored to fit the data — not all data are suitable



Selection sort

largest

sorted

e Idea: build sorted sequence at end of array

e At each step:
— Find largest value in not-yet-sorted portion

— Exchange this value with the one at end of unsorted
portion (now beginning of sorted portion)

e Complexity 1s O (n?)— but simple to
e Also best way to find kth largest, or top k values




Heap sort

e Another priority queue sorting algorithm

— Note about selection sort: unsorted part of array is like
a priority queue — remove greatest value at each step

— Also recall that heaps make faster priority queues

e Idea: create heap out of unsorted portion, then
remove one at a time and put in sorted portion

e Complexity1s 0 (n log n)
- 0(n) to create heap + 0 (n log n) to remove/reheapify

e Note proof: 0 (n log n) 1s the fastest possible
class of any comparison-based sorting algorithm

— But constants do matter — so some are faster than others
in practice



Insertion sort

e Generally “better” than other simple algorithms
e Inserts one element into sorted part of array
— Must move other elements to make room for it

current

e

O Complexity 1S O (n?) (code)
— But runs faster than selection sort and others in its class

— Really quick on nearly sorted array
e Often used to supplement more sophisticated sorts



Divide & conquer strategies

e Idea: (1) divide array in two; (2? sort each part;
(3) combine two parts to overall solution

® c.g., mergeSort
if (array is big enough to continue splitting) -2
divide array into left half and right half;
mergeSort (left half);

mergeSort (right half);
merge (left half and right half together);

else =2 sort small array in a simpler way

— Cost each time to merge two halves 1s O (n),
and overall complexity 1s 0 (n log n)

— But notice 1t also uses 2n space

— Commonly used to sort large files (i.c., when there
are too many records to load all of them into memory at once)



Quick sort

e Invented in 1960 by C.A.R. Hoare

— Studied extensively by many people since

— Probably used more than any other sorting algorithm
e Basic (recursive) quicksort algorithm:

1f (there 1s something to sort)

{ partition array;

sort left part;
sort right part; }

— All the work 1s done by partition (a.k.a. split) function
— And there is no need to merge anything at the end



Partitioning (for quickSort)

e Arrange so elements in the two sub-arrays are on correct
side of a pivot element

— Also means pivot element ends up 1n its final position

pivot

all <= pivot all >= pivot

e Done by performing two series of “scans’
scan from (1 = left) until al[i] >= pivot;
scan from (jJ = right) until a[j] <= pivot;

swap al[i] and a[j], and continue both scans;

stop scanning when 1 >= 7J; (code)



Quick sort (cont.)

e Complexity 1s 0 (n log n) on average
— Fastest comparison-based sorting algorithm
— But overkill, and not-so-fast with small arrays
— Um ... what about a small partition?!

— One optimization applies insertion sort for partitions
smaller than than 7 elements

e And worst case 1s 0 (n?) !
— Depends on initial ordering and choice of pivot

e Btw: C library , and C++ STL



Compare 3 table implementations

Table operation Hash table BST Sorted array
create (new table) O (n) O (1) O (n)
get, update O (1) O (log n) O (log n)
put O (1) O(log n) O (n)
remove O (1) O(log n) O (n)
printAll O(n log n) O (n) O (n)

e Conclusion: choice depends on table purpose and size of n

e Q. Ever want to use a sorted array?
— A. It depends!




