Starting Savitch Chapter 10

Classes

e A class is a data type whose variables are
objects

— Some pre-defined classes in C++ include int,

char, ifstream
— Of course, you can define your own classes too
e A class definition says two basic things

— The kinds of values an object can hold
— A description of the member functions

Example: class DayOfYear

e Decide on the values to represent

e This example's values are dates such as July 4
using an integer for the number of the month

— Member variable month is int (Jan = 1, Feb = 2, etc.)
— Member variable day i1s int

e Decide on the member functions needed

e Just one member function named output 1n the
first version of this class

Simplest version of DayOfYear

e [ike a struct with

class DayOfYear { an added method

palblie: — All parts public
vold output () ; i
int month: — Clients access
ot Sy nynnh,day

| directly

vold DayOfYear::output () {
cout << "month = " << month
<< ", day = " << day << endl;

Notes about :;'and .’

e "::' used with classes to identify a member
volid DayOfYear::output() { .. }
— Also used with namespaces — 1dentifies scope
— Called scope resolution operator

e . used with variables to 1dentify object
DayOfYear birthday;

birthday.output ()

— Object reference 1s passed to the method as an
implicit parameter

What's wrong with DayOfYear?

e Most important: data are exposed to users
e Why 1s that a problem?
e Two major reasons:

— No way to insure consistent object states — e.g.
user could birthday.month = 74; // huh?

— Developer can't change data names/meanings
— e.g. can't change int to string for month,
can't save Date instead of month, day, ...

e What's the solution (in C++)?

An access specifier: private

e Private members of a class can only be
referenced within the definitions of member
functions (and friends — later)

— If the program tries to access a private member, the
compiler gives an error message

e Private members can be data or functions
— Should have public set methods to change data
— Need public get methods to access the data

e Btw: default for class is private (public for struct)

Better class DayOfYear

class DayOfYear {
public:
vold 1nput ();
void output ();
vold set (int new month, int new day);
int get month();
int get day();
private:
vold check date();
int month;
int day;

¥ e o

Creating and assigning (=) objects

e Decclaring an object creates the object
DayOfYear today, tomorrow;

// two objects are created on stack
e Different 1f declaring pointers (or references)
DayOfYear *soon, &r = today; //no object
soon = new DayOfYear; // now object on heap

e Assignment operator copies object’s data
r = *soon; // no new object—just copy on stack
// original (today) object data overwritten

The BankAccount Class (part 1 of 4)

//Program to demonstrate the class BankAccount.

An h r I #include <iostream>
using namespace std;

//Class for a bank account:
class BankAccount

example:

void set(int dollars, int cents, double rate); /

set /s ove
//Postcondition: The account balance has been set to/$dollars.cents;
B a n kACCO' | nt //The interest rate has been set to rate percent.
void set(int dollars, double rate);
//Postcondition: The account balance has been set to $dollars.00.
//The interest rate has been set to rate percent.

void update();
: //Postcondition: One year of simple interest has been
. HaS Operatlons //added to the account balance.
approprlate for a double get_balance();

//Returns the current account balance.

double get_rate();

bank account

(' 1 t d ‘th //Returns the current account interest rate as a percentage.
lmp. emen e Wl void output(ostream& outs);

pUbllC member //Precondition: If outs is a file output stream, then

//outs has already been connected to a file.

functions //Postcondition: Account balance and interest rate have been written to the
//stream outs.
private:

— And a private double i_)aWance:
e . double interest_rate;
utility function

e Stores an account }
balance and an e main©

BankAccount accountl, account2;

intereSt rate cout << "Start of Test:\n";

double fraction(double percent);
//Converts a percentage to a fraction. For example, fraction(50.3) returns 0.503.

The BankAccount Class (part 2 of 4)

Method
overloading —

BankAccount: :set

}

e A method's signature
includes its name and
its parameter list

{

e Can overload a name
like set with a different
parameter list

N
5

r
1

— Number, types, order

void BankAccount::set(int dollars,

void BankAccount::set(int dollars,

accountl.set(123, 99, 3.0); Calls to the overloaded
cout << "accountl initial statement:\n"; member function set
accountl.output(cout);

set (100, 5.0);

accountl.
cout << "accountl with new setup:\n";
accountl.output(cout);

accountl.update();
cout << "accountl after update:\n";
accountl.output(cout);

account2 = accountl;
cout << "account2:\n";
account2.output(cout);
return 0;

int cents, double rate)

if ((dollars < 0) || (cents < 0) || (rate < 0))

{
cout << "ITlegal values for money or interest rate.\n";
exit(1l);

}

balance = dollars + 0.0l*cents; Definitions o,
i mer fu
interest_rate = rate; member fun

double rate)

if ((do1lars < 0) || (rate < 0))

{

cout << "ITlegal values for money or interest rate.\n";
exit(l);
3

balance = dollars;
interest_rate = rate;

More implementing BankAccount

The BankAccount Class (part 3 of 4)

void BankAccount: :update()

{

balance = balance + fraction(interest_rate)*balance;

\

. In the definition of a member
double BankAccount::fraction(double percent_value)

function, you call another
{ member function like this.
return (percent_value/100.0);

double BankAccount::get_balance()
{

return balance;

double BankAccount::get_rate()
{

return interest_rate; Stream parameter that can
be replaced with either cout

or with a file output stream

//Uses iostream: ‘,///

void BankAccount: :output(ostream& outs)
{
outs.setf(ios::fixed);
outs.setf(ios: :showpoint);
outs.precision(2);
outs << "Account balance $" << balance << endl;
outs << "Interest rate "

ng/n

<< interest_rate << "%" << endl;

Sample BankAccount results

Sample Dialogue

// excerpts from main:

Start of Test: accountl.set (123,99, 3);
accountl initial statement: // called Wlth all 3 arguments
Account balance $123.99

Interest rate 3.00%
accountl with new setup: accountl.set (100, 5);

Account balance $100.00 // called other version of set
Interest rate 5.00%
accountl after update:
Account balance $105.00
Interest rate 5.00%

account2: account?2 = accountl;
Account balance $105.00

Interest rate 5.00%

accountl.update () ;

Q: What if account2.update()?

Constructors

e A constructor (a.k.a. ctor) 1s a member function
— Usually declared public

e One 1s always called when an object 1s created
e Main purpose — 1nitialize instance variables

— Also useful to allocate resources if needed
e Constructor's name must be the name of the class

e A constructor cannot return a value
— No return type, not even void

A BankAccount constructor

e Declare in public part of class definition

BankAccount (int dollars, int cents, double rate);

e Implement essentially like other methods

BankAccount: :BankAccount (int dollars, int cents,
double rate) {

1f ((dollars < 0) || (cents < 0) || (rate < 0)) {
cout << "Illegal values for money or rate\n";
exit (1) ;

}

balance = dollars + 0.01 * cents;

interest rate = rate;

Constructor call is automatic

e May not invoke (1.e., call) 1t directly:
accountl.BankAccount (10, 50, 2); //ERROR
e Instead invoke indirectly
— On stack: BankAccount accountl (10, 50, 2);
— Or free store: ... new BankAccount (10, 50, 2);
e But class must have a matching constructor

— C.g., BankAccount () ifjllSt new BankAccount;

e Default constructor 1s called — but oops: ERROR if
explicit constructor is defined and not overloaded!

Overloading and the default ctor

e Another possible BankAccount ctor:

BankAccount (double balance, double interest rate);

e Or can have either one of the following. Why not both?

BankAccount (double balance) ;
BankAccount (double interest rate);

e Also either explicitly define default ctor:

BankAccount ();

Or implicitly via default arguments in other ctors:
BankAccount (double balance = 0.0);

e Tip: good 1dea to always include a default ctor even 1f
there 1s no need to 1nitialize variables

— So clients can: BankAccount checking, savings;
— Important for inheritance reasons too (a future topic)

Base/member initialization list

e An 1nitialization section 1n a constructor definition
provides an alternative way to initialize member variables

BankAccount: :BankAccount () : balance(0), interest rate(0)
{ y //still need a body (even if intentionally empty like this case)
— Can use parameter names too — even 1f same name as member!

e Note: order of initialization matches the order in which the
variables are declared in the class, not their order in the list

® Must use such a list for constants and reference variables
(since references are always constant)

— Also must use to initialize private data in a base class (later topic)

e Should always use for user-defined types 1f default ctor not
appropriate — to avoid extra ctor (and destructor) calls

