
Classes

l  A class is a data type whose variables are
objects

–  Some pre-defined classes in C++ include int,
char, ifstream

–  Of course, you can define your own classes too
l  A class definition says two basic things

–  The kinds of values an object can hold
–  A description of the member functions

Starting Savitch Chapter 10

Example: class DayOfYear

l  Decide on the values to represent
l  This example's values are dates such as July 4

using an integer for the number of the month
–  Member variable month is int (Jan = 1, Feb = 2, etc.)
–  Member variable day is int

l  Decide on the member functions needed
l  Just one member function named output in the

first version of this class

Simplest version of DayOfYear
l Like a struct with

an added method
– All parts public
– Clients access

month, day
directly

class DayOfYear {
public:
 void output();
 int month;
 int day;
};
void DayOfYear::output() {
 cout << "month = " << month
 << ", day = " << day << endl;
 }

Notes about '::' and '.'

l  '::' used with classes to identify a member
 void DayOfYear::output() { … }

– Also used with namespaces – identifies scope
– Called scope resolution operator

l  '.' used with variables to identify object
 DayOfYear birthday;

 birthday.output();
– Object reference is passed to the method as an

implicit parameter

What's wrong with DayOfYear?

l Most important: data are exposed to users
l Why is that a problem?
l Two major reasons:

– No way to insure consistent object states – e.g.
user could birthday.month = 74; // huh?

– Developer can't change data names/meanings
– e.g. can't change int to string for month,
can't save Date instead of month, day, …

l What's the solution (in C++)?

An access specifier: private

l  Private members of a class can only be
referenced within the definitions of member
functions (and friends – later)
–  If the program tries to access a private member, the

compiler gives an error message
l  Private members can be data or functions

–  Should have public set methods to change data
–  Need public get methods to access the data

l  Btw: default for class is private (public for struct)

Better class DayOfYear
class DayOfYear {
public:
 void input();
 void output();
 void set(int new_month, int new_day);
 int get_month();
 int get_day();
private:
 void check_date();
 int month;
 int day;
};

DISPLAY 10.4

Creating and assigning (=) objects

l Declaring an object creates the object
DayOfYear today, tomorrow;
 // two objects are created on stack

l Different if declaring pointers (or references)
DayOfYear *soon, &r = today; // no object
soon = new DayOfYear; // now object on heap

l Assignment operator copies object’s data
r = *soon; // no new object–just copy on stack
 // original (today) object data overwritten

Another class
example:
BankAccount

l  Has operations
appropriate for a
bank account
(implemented with
public member
functions)
–  And a private

utility function
l  Stores an account

balance and an
interest rate 2 objects created

Method
overloading –
BankAccount::set

l  A method's signature
includes its name and
its parameter list

l  Can overload a name
like set with a different
parameter list
–  Number, types, order

More implementing BankAccount

Using stream manipulators

Sample BankAccount results
// excerpts from main:

account1.set(123,99,3);

// called with all 3 arguments

account1.set(100,5);

// called other version of set

account1.update();

account2 = account1;

Q: What if account2.update()?

Constructors

l  A constructor (a.k.a. ctor) is a member function
–  Usually declared public

l  One is always called when an object is created
l  Main purpose – initialize instance variables

–  Also useful to allocate resources if needed
l  Constructor's name must be the name of the class
l  A constructor cannot return a value

–  No return type, not even void

A BankAccount constructor
l  Declare in public part of class definition

 BankAccount(int dollars, int cents, double rate);
l  Implement essentially like other methods

 BankAccount::BankAccount(int dollars, int cents,
 double rate) {

 if ((dollars < 0) || (cents < 0) || (rate < 0)) {
 cout << "Illegal values for money or rate\n";
 exit(1);
 }

 balance = dollars + 0.01 * cents;

 interest_rate = rate;
}

Constructor call is automatic

l May not invoke (i.e., call) it directly:
account1.BankAccount(10, 50, 2); // ERROR

l  Instead invoke indirectly
– On stack: BankAccount account1(10, 50, 2);
– Or free store: … new BankAccount(10, 50, 2);

l But class must have a matching constructor
–  e.g., BankAccount() if just new BankAccount;

l  Default constructor is called – but oops: ERROR if
explicit constructor is defined and not overloaded!

Overloading and the default ctor

l  Another possible BankAccount ctor:
 BankAccount (double balance, double interest_rate);

l  Or can have either one of the following. Why not both?
 BankAccount (double balance);
 BankAccount (double interest_rate);

l  Also either explicitly define default ctor:
 BankAccount ();

 Or implicitly via default arguments in other ctors:
 BankAccount (double balance = 0.0);

l  Tip: good idea to always include a default ctor even if
there is no need to initialize variables

–  So clients can: BankAccount checking, savings;
–  Important for inheritance reasons too (a future topic)

Base/member initialization list
l  An initialization section in a constructor definition

provides an alternative way to initialize member variables
BankAccount::BankAccount() : balance(0), interest_rate(0)

{ } // still need a body (even if intentionally empty like this case)
–  Can use parameter names too – even if same name as member!

l  Note: order of initialization matches the order in which the
variables are declared in the class, not their order in the list

l  Must use such a list for constants and reference variables
(since references are always constant)
–  Also must use to initialize private data in a base class (later topic)

l  Should always use for user-defined types if default ctor not
appropriate – to avoid extra ctor (and destructor) calls

