
More class design with C++

Starting Savitch Chap. 11

Member or non-member function?

l  Class operations are typically implemented as
member functions
–  Declared inside class definition
–  Can directly access private members
–  Usually the task involves only one object (this)

l  But some operations are more appropriate as
ordinary (nonmember) functions
–  Declared outside any class definition
–  Usually the task involves more than one object
–  Cannot access private members of a class though

l  Unless they are friends of the class

Implementing an ordinary function

l  Consider an equality function for DayOfYear
–  Comparing two objects, so a non-member function
bool equal(DayOfYear date1, DayOfYear date2) {
 return date1.get_month() == date2.get_month()
 && date1.get_day() == date2.get_day();
}

l  Why is function equal not very efficient?
–  Each call to a public accessor function requires

"overhead" costs – to manage new stack frames
–  Accessing date1.month is simpler, more efficient

l  But it is also illegal! Unless …

friends
l  Can be a function or (rarely) a whole other class
l  Not class members, but can access private members

of a class that has declared it as a friend
l  Declared inside class by keyword friend

 class DayOfYear {
public:
 friend bool equal(DayOfYear date1,
 DayOfYear date2);

l  Implement without DayOfYear::
–  Okay to use private members of DayOfYear though

A Money class with a friend
class Money {
public:
 friend Money add (Money, Money);
 ...
private:
 long cents;
};
Money add (Money amt1, Money amt2) {
 Money temp;
 temp.cents = amt1.cents + amt2.cents;
 return temp;
}
l  Why is this still inefficient? How to improve it?

Parameter passing efficiency

l  The add function uses “call-by-value” parameters
–  Copies of objects are created and then later destroyed

l  Using “call-by-reference” parameters is more
efficient – no copies (at that stage anyway):
friend Money add (Money &, Money &);

...

Money add (Money &amt1, Money &amt2) {...}

l  But a new problem now: can’t pass it constant
objects – even though it doesn’t change them

const
l  Part of an object’s type in C++

const int x = 12;
 // must initialize on creation; can never change afterwards
someFunction(x);
 // error if parameter is int& without const

l  Good classes support constant objects: “SCO”
friend Money add (const Money &, const Money &); ...
Money add(const Money &amt1, const Money &amt2){…}

l  But what about amt1.getCents() inside add?
–  Answer: won’t compile! Unless getCents() is const too:

long getCents() const; ...
long Money::getCents() const { return cents; }

Operator function overloading
l  Example: ADT operator+(const ADT &, const ADT &);

–  Overloads + to return an ADT object (hopefully the sum of the two
ADT arguments – best to not change operator’s meaning)

l  Can overload almost any C++ operator
–  At least one argument must be a user-defined type
–  Precedence, “narity”, and associativity rules apply as usual

l  e.g., + has usual precedence, is binary or unary, l-r
l  e.g., = has lower precedence, is binary only, r-l

–  See other rules on page 629 of the Savitch text
l  But “just because you can does not mean you should”

–  e.g., a bad idea to overload , or && or || even if legal
–  And should always maintain the expected operator behavior

Operator functions for Money
l  Replace add function with operator +

friend Money operator+
 (const Money &, const Money &); ...
Money operator+(const Money &amt1, const
Money &amt2){ /* same implementation as add */ }

l  Replace equal function with operator ==
friend bool operator== (const Money &,
const Money &); ...

bool operator== (const Money &amt1,
const Money &amt2) {

 return amt1.cents == amt2.cents;
}

2 ways to use operator functions

Money a(100), b(50); // two Money objects
l  Can add/compare by functional notation:

Money sum1 = operator+(a, b);

if (operator==(a, b)) … // false in this case
l  But now can use infix notation too:

Money sum2 = a + b;

if (sum1 == sum2) … // true in this case
l  By the way: C++ will try to convert any function

argument to match the parameter type
if (sum1 == 150) … // still true! See next slide.

Implicit type conversion in C++
l  Converting ctors – e.g., Money(long dollars);

–  Any ctor that takes exactly one argument
–  Invoked whenever an argument of that type is passed

to a function that expects an object
l  In the case on previous slide – 150 converted to Money(150)

l  Operator conversion functions – inverse idea
–  Specify types to which an object may be converted
–  Say class Money has operator double() const;

l  Means a Money object can be implicitly converted to
double in certain circumstances, like cout << sum1;

–  Better to overload << instead for this purpose though

Member vs. non-member ops
l  Recall that some functions are more naturally

defined as class members
–  Specifically, any function that needs a this pointer:

l  e.g., ++, +=, … all need to change the object
–  And there are four operators that can only be

overloaded as class members: =, (), [], and ->
l  Sometimes non-member functions better though

–  e.g., binary functions, where the order of the
arguments doesn’t matter:

l  e.g., ==, <, …, and binary forms of +, -, *, /, %
–  Also when must access other types – like << and >>

that require access to ostream and istream (cout, cin)

Overloading << and >>
l  Want to do: cout << cost << endl;

–  Need: friend ostream& operator<<
(ostream& outs, const Money& amount); ...

ostream& operator<<(ostream& outs, const
Money& amount) {

 // print to outs (e.g., outs << amount.cents;)
 return outs; // must return the ostream reference
}

l  Want to do: cin >> price >> tax;
–  Need: friend istream& operator>>
(istream& ins, Money& amount);

About member operator functions
l  First argument is this – but it’s hidden

–  Always the left argument of binary operations
–  So there can be no implicit conversion of left argument –

must be object of the correct type
–  Is the only argument of unary operations

l  Often return *this to allow operation chaining
–  e.g., imagine a Money += (compound assignment op)
Money& operator+= (const Money &right); ...
Money& Money::operator+= (Money const &right) {
 return *this = *this + right;
} // assuming operator= and operator+ are both already defined

l  Note: two versions of operator++ and operator--
l  And usually want two versions of operator[]

Three free member operators
l  By default, for any class C (even class C {};),

the compiler supplies three member operators
l  An assignment operator

 C& operator=(const C &);
–  Like a free copy ctor … makes a shallow copy
–  So often necessary to redefine it to make a deep copy

l  And two different address-of operators
–  One for mutable objects:

C* operator&();

–  And one for constant objects:
const C* operator&() const;

–  No good reason to redefine either of these functions!

Classes with dynamic memory

l  Must properly manage – to avoid memory leaks
–  C++ does not have an automatic garbage collector –

so C++ programmers are responsible for returning
memory to the free store

l  Example class from text (Display 11.11): StringVar
...
private:

 char *value; // pointer to dynamic array of characters
 int max_length; //declared max length of array
–  Point is to hold/manage a C-string of any length

Managing dynamic memory

l  Constructor (usually) allocates it
StringVar(const char a[]); ...
StringVar::StringVar(const char a[]) :

 max_length(strlen(a)) {

 value = new char[max_length + 1];

 strcpy(value, a);

}

l  But what happens when the object is destroyed?
StringVar s1("hot"); // on stack, will go out of scope soon

l  Solution is to define a destructor (a.k.a. dtor)

Destructors - dtors
l  A dtor is invoked whenever an object goes out of

scope, or by delete for objects on free store
–  Compiler supplies a default one if you don’t
–  Default won’t free dynamic memory or other resources

l  Defined like a ctor, but with a ~ in front, and it
may not take any arguments
~StringVar(); ...
StringVar::~StringVar() { delete [] value; }

l  Can invoke directly on an object (unlike ctors)
 stringPtr->~StringVar(); // rarely done though

Manager functions (inc. Big 3)
l  4 functions every class must properly manage:

–  Default ctor, copy ctor, dtor, and assignment operator
l  Compiler supplies defaults of all 4, but often should redefine

–  Latter three also known as “The Big Three” – if you need to
redefine one of them, then you need to redefine all three of them

l  Copy ctor – StringVar(const StringVar&);
–  Compiler-supplied version makes a “shallow copy”
–  Invoked when initializing with object as argument:
StringVar s(otherString);

l  Or by “C-style” syntax: StringVar s = otherString;
–  Also invoked to pass (or return) an object by value to

(or from) a function

Implementing StringVar copy ctor
l  Question: why not just keep the default copy ctor

for StringVar objects?
l  Ans: Need a complete, independent copy of the

argument – even if the argument is *this
–  Therefore must create new dynamic array, and copy

all characters to the new array
StringVar::StringVar(const StringVar& other) :

max_length(other.length()) {
 value = new char[max_length + 1];
 strcpy(value, other.value);
}

See 11-11.cpp and 11-12.cpp (also in ~mikec/cs32/Savitch/Chapter11/)

Why redefine the = operator?

l  Given these declarations:
 StringVar s1("cat"), s2("rabbit");

l  The following statement is legal:
 s1 = s2;

l  But without redefining operator=, we would
have s1.value and s2.value both pointing to the
same memory location (a "shallow copy")

–  Furthermore, s1’s old value is now a memory leak
l  So: StringVar& StringVar::operator=

 (const StringVar& right);

Defining operator= [version 1]
l  The definition of = for StringVar could be as follows:
StringVar& StringVar::operator=
 (const StringVar& right){

 int new_length = strlen(right.value);
 if ((new_length) > max_length)
 new_length = max_length;

 for(int i = 0; i < new_length; i++)
 value[i] = right.value[i];
 value[new_length] = '\0';
 return *this;
}
l  Notice anything wrong with this version?

Defining operator= [version 2]
StringVar& StringVar::operator=
 (const StringVar& right){
 delete[] value;
 int new_length = strlen(right.value);
 max_length = new_length;
 value = new char[max_length + 1];

 for(int i = 0; i < new_length; i++)
 value[i] = right.value[i];
 value[new_length] = '\0';
 return *this;
}
l  That solves problem of incompletely copied strings, but …
l  What if somebody uses it as follows? s1 = s1;

Defining operator= [finally?]
l  Idea is to delete value only if more space needed:
StringVar& StringVar::operator=
 (const StringVar& right){
 int new_length = strlen(right.value);
 if (new_length > max_length) {
 delete[] value;
 max_length = new_length;
 value = new char[max_length + 1];
 }
 for(int i = 0; i < new_length; i++)
 value[i] = right.value[i];
 value[new_length] = '\0';
 return *this;
}

Demos: advanced class design

l  ~mikec/cs32/demos/IntArray/ files
– Mostly about dealing with objects pointing to

dynamic memory
l  ~mikec/cs32/demos/String/ files

– Full-featured string-like class, with many
overloaded operators and other functions that
are not part of the textbook’s StringVar class

