Breadth
of CS32’s
subject
matter

(Reader p. 14)

Application
User’s
Interface
(AUI)

Application
Programmer’s
Interface

(API)

Operating
System

Y

Applications: Compilers, word processors, spreadsheets,

ftp, telnet, Web browser, etc.

UNIX shell

Language libraries: C, C++, Java, FORTRAN, etc.

System call interface (entry points to kernel)

UNIX kernel:

File
management

Interprocess
communication
(IPC)

Primary and
secondary
storage
management

Process
management

CPU
scheduler

Device drivers: Mouse driver, printer driver, CD-ROM driver,

hard disk driver, etc.

Hardware: Wires, capacitors, resistors, transistors, ICs,
mouse, display monitor, keyboard, CPU, RAM,

hard disk, CD-ROM, printer, etc.

Underlying computer system
= hardware + software

Program
counter

System bus Memory bus

Expansion slots for
other devices such
as network adaptors

Thanks to Chandra Krintz and Kevin Sanft, for this figure and some other parts of these lecture notes.

Machine Cycle: What a CPU
does ... over and over again.

Retrieve an insauction from main memory

= N
(J1

execute || decode

Carry out the Determine what the
instruction instruction is

Processing data & instructions

e Program instructions and data are in main memory
— CPU loads next few instructions into a cache — for fast access —
and similarly stores data used by the instructions in a data cache
e All CPU components (hardware registers, ALU, bus) use
same data width — e.g., 32 bit or 64 bit

— System bus (wires) = address bus + data bus + other signals

e CPU toggles pins to identify which devices (memory, 10)
1t wishes to access — and whether 1t wants to read or write

— The CPU doesn’t block after a request, it goes onto another task
until the device “interrupts” it with the data.

— Devices use special wires/pins to alert the CPU that the data that
the CPU requested are ready

Things to ponder

e How are all of these computer operations
managed effectively?

— After all, the CPU just responds to the next
instruction. So how are all the instructions
managed, especially when there are many clients
(users, processes)?

e And from a different perspective, how are we
— and our simple programs — able to deal with
such a complex system?

— Don’ t we need an intermediary?
e Hmm ... we need an operating system!

Operating systems: two views

e Top-down view: an OS is software that 1solates
us from the complications of hardware resources

— In other words, an OS is an application programmer’ s
and a user’ s interface to computer operations

Application/user programs (processes)

B Opemting System | software

Main Memory ‘ I/O devices

e Bottom-up view: an OS 1s software that allocates
and de-allocates computer resources — efficiently,
fairly, orderly and securely

Some “big picture” ideas: user's point of view

A simple computer model

computer

w display and
—| 3 progra keyboard

printer

— | p——

This and the next several figures derived from B. Molay’s Understanding Unix/Linux Programming, Pearson 2003.

An example program

#include <stdio.h>
int main (void) {
int c;
while ((c = getchar()) != EOF)
putchar (c) ;

putchar()

a=>

R——}
getchar{)

More realistic computer model

How connected? Not like this!

OS manages everything!

programs ,

l

Operating System

OOP idea: OS provides services

User space

e
L/ | |system \

Unix kernel

Types of operating systems

e Single-user, single-process — 1.€., one customer,
and one job at a time

e Single-user, multi-process — one workstation, but
lots of stuff running

— Actually the CPU handles just one process at any
moment — jobs are swapped in/out in “time slices”

e Multi-user, multi-process — e.g., Unix/Linux
— Same 1dea, but much more swapping to do
— And added fairness, efficiency and security concerns

Unix history (Linux prequel)

e AT&T Bell Labs — System V standard
— 1969-70: Ken Thompson wrote Unix in “B”
— 1972: Dennis Ritchie developed C — a better B
— Unix rewritten in C, 1973
— ... eventually System V, 1983

e UC Berkeley — BSD standard
— Started with a copy of System IV, late 1970s
— Lots of changes/additions in 1980s
— Now FreeBSD

e Open source — Linux, since early 1990s

Unix philosophy (same as C)

e Small 1s beautiful
— Each program does just one thing

— Pipe commands (or use successive functions in C) to
accomplish more complicated things

— Less typing 1s best (using)
e That’ s why so many commands are short (Is, cp, mv, ...)
e Users/programmers know what they are doing
— That’ s what makes the brevity sufficient

— Means very few restrictions (or safety nets) apply

Linux

-
e Linus Torvalds created it as a Finnish g -

undergraduate student 5y -

j S

e Posted on Internet in 1991) |

— Open source — licensed under GPL

— Version 1.0 in 1994; version 2.2 in 1999; version
currently at CSIL 1s Linux 3.11.10 (Fedora release 18)

e 1000s of programmers worldwide can read, modify,
and redistribute 1ts source code, so if evolves.

— People improve it, adapt 1t, fix bugs, ...

What is Linux?

e A fully-networked Unix-like operating system
e Multi-user, multitasking, multiprocessor system

— Fundamental 1n the system’s design and
implementation

e Both command-line and graphical interfaces
e Coexists with other operating systems

e Runs on multiple platforms

e Distribution includes the source code!

The Linux System

, i inclad Set of data structures (usually on a disk) that holds
| ;_‘ 1T CO - ;.‘ . ,;_" . - ~) .) . .
Usel uil;mam S HIGLHC e; _ directories of files. All devices are accessed like
xecutable programs and scripts les on dis clos Wi
executable programs and scripts they are files on disk (open/close, read/write).

The shell interprets user User commands /

commands. It 1z responsible for Shell /
finding the commands and starting - 5
their execution. Several different Kernel File systems
shells are available. “Bash” 1s Device drivers

popular and what we will use.
Hardware /

Software that makes use 0f all all of the
The kemel manages the hardware functionality that each device provides.
resources for the rest of the Drivers implement the file interface (open/close,
system read/write) so that processes can access the device(s).
One driver can support 1+ similar devices.

Thanks again to Chandra Krintz and Kevin Sanft.

Linux kernel — the actual OS

e Manages processes:

— Starts, stops, suspends, swaps, manages inter-
process communication, ...

— Maintains their state
e Manages files (and directories)
e Manages main memory
e Manages disk operations

CPU scheduling

e Kernel sends interrupt to a process to give
another process a turn to use the CPU

e Processes can give up CPU when they
don’ t need it (e.g. waiting on I/O device)

Process1 Process2
1 User code

d->
rea \ Kernel code - Context switch

User code
Disk Interrupt-> Kernel code - Context switch
Return from read-> User code

Processes request services from
the kernel in two ways

e 1. Using system calls (read, write, fork, ...)
— OOP idea: these are the kernel’ s interface

— Btw, processes access devices just like files —
that’ s how they are represented by the kernel,
and they occupy places in the file system

e Use open, close, read, write, release, seek, ...

e 2. Or indirectly, through shell commands
(including programs) or library functions
that, in turn make use of system calls

Linux file system

Directories ——

e Rooted,
hierarchical

— Data ﬁ]es are
stored 1n
directories

® A ﬁle’ S (fUIl) User home

pathname directories
starts at the
root

— /etc/passwd
— /home/neale/b

<«— Data files

Special file names

e . (by 1itself) The current directory
— ./a 1s the same as a
e .. The parent (toward root) directory

- ../jane/x go up one level then look in
directory named jane for x

e ~ Your home directory
~ ~harvey Username harvey s home directory

e Have to “escape” spaces with a backslash
- my\ file\ name\ with\ spaces
— Moral: don’ t use spaces in file or directory names!

Basic user interface is the shell

Shell

e A program that runs in a terminal and
provides a command-line interface for user

e Also an interpreter that executes user
commands

e And a powerful programming language
— Shell script — a sequence of commands in a file
e [ots of different shells to choose from
— sh, csh, tcsh, bash ...

— We' 1l focus on bash (and sh scripts) in this course

Shell scripts

Not covered in Reader (#1 just mentions)

Thys 1s just an introduction — learn much more
doing lab work

Bourne shell (sh) programs

e Are text files with sh commands — €.g., myScript

— To execute, can do sh myScript
e The program runs in a new shell — called a child shell

— Or chmod u+x myScript —then just . /myScript
e Requires compatible default shell (sh and usually bash okay)

e # — normally identifies a comment

— Special case if line 1 — #! /bin/sh — 1dentifies shell
e Means use sh as child shell for this script — works in all shells

e Can access command line arguments: $1 to S#
— e.g.,cp $1 $2 # copies first to second (if files)
— e€.g., echo $# # prints number of arguments

sh variables and assignment

e name= Jack Sprat # note no spaces

¢ ccho “The name is $name” #need ‘s’

e workdir="pwd #use .. to assign result of ..
— Or can use $ (pwd) 1nstead of “pwd®

e Similarly, echo “date and time is “date’”

e (Can read from standard input and calculate too

— echo “enter value’
— read val
— doubleval= expr Sval + S$Sval"
e Or: doubleval=$((val + wval)) # “c-style expr.”
— Orjust: echo “doubled: ‘expr Sval + S$val’’

sh control structures, and FYls

® An if-then-elif-else-fi statement
— Expression is a test: test $# -gt 0
— Or simpler: [s# -gt 0] # spaces mandatory
— Can test file attributes too: -d, -£, -e, -, -w, -x, ...
® A while-do-done statement: same expressions
® A for-do-done statement: for variable in list
— List 1s command line arguments if in clause omitted
e FYI: can program any shell, but different syntax
— Also “scripting languages’ (e.g., Perl, Python, ...)
e Examples at ~mikec/cs32/demos/

