
Breadth
of CS32’s
subject
matter
(Reader p. 14)

Underlying computer system
= hardware + software

Thanks to Chandra Krintz and Kevin Sanft, for this figure and some other parts of these lecture notes.

Machine Cycle: What a CPU
does … over and over again.

Processing data & instructions
l  Program instructions and data are in main memory

–  CPU loads next few instructions into a cache – for fast access –
and similarly stores data used by the instructions in a data cache

l  All CPU components (hardware registers, ALU, bus) use
same data width – e.g., 32 bit or 64 bit
–  System bus (wires) = address bus + data bus + other signals

l  CPU toggles pins to identify which devices (memory, IO)
it wishes to access – and whether it wants to read or write
–  The CPU doesn’t block after a request, it goes onto another task

until the device “interrupts” it with the data.
–  Devices use special wires/pins to alert the CPU that the data that

the CPU requested are ready

Things to ponder
l  How are all of these computer operations

managed effectively?
–  After all, the CPU just responds to the next

instruction. So how are all the instructions
managed, especially when there are many clients
(users, processes)?

l  And from a different perspective, how are we
– and our simple programs – able to deal with
such a complex system?
–  Don’t we need an intermediary?

l  Hmm … we need an operating system!

Operating systems: two views
l  Top-down view: an OS is software that isolates

us from the complications of hardware resources
–  In other words, an OS is an application programmer’s

and a user’s interface to computer operations

l  Bottom-up view: an OS is software that allocates
and de-allocates computer resources – efficiently,
fairly, orderly and securely

A simple computer model

This and the next several figures derived from B. Molay’s Understanding Unix/Linux Programming, Pearson 2003.

Some “big picture” ideas: user’s point of view

An example program
#include <stdio.h>
int main(void) {
 int c;
 while ((c = getchar()) != EOF)
 putchar(c);
}

More realistic computer model

How connected? Not like this!

OS manages everything!

OOP idea: OS provides services

Types of operating systems

l  Single-user, single-process – i.e., one customer,
and one job at a time

l  Single-user, multi-process – one workstation, but
lots of stuff running
–  Actually the CPU handles just one process at any

moment – jobs are swapped in/out in “time slices”
l  Multi-user, multi-process – e.g., Unix/Linux

–  Same idea, but much more swapping to do
–  And added fairness, efficiency and security concerns

Unix history (Linux prequel)
l  AT&T Bell Labs – System V standard

–  1969-70: Ken Thompson wrote Unix in “B”
–  1972: Dennis Ritchie developed C – a better B
–  Unix rewritten in C, 1973
–  … eventually System V, 1983

l  UC Berkeley – BSD standard
–  Started with a copy of System IV, late 1970s
–  Lots of changes/additions in 1980s
–  Now FreeBSD

l  Open source – Linux, since early 1990s

Unix philosophy (same as C)

l  Small is beautiful
–  Each program does just one thing
–  Pipe commands (or use successive functions in C) to

accomplish more complicated things
–  Less typing is best (using 1970s computers)

l  That’s why so many commands are short (ls, cp, mv, …)

l  Users/programmers know what they are doing
–  That’s what makes the brevity sufficient
–  Means very few restrictions (or safety nets) apply

Linux
l  Linus Torvalds created it as a Finnish

undergraduate student
l  Posted on Internet in 1991

–  Open source – licensed under GPL
–  Version 1.0 in 1994; version 2.2 in 1999; version

currently at CSIL is Linux 3.11.10 (Fedora release 18)
l  1000s of programmers worldwide can read, modify,

and redistribute its source code, so it evolves.
–  People improve it, adapt it, fix bugs, …

What is Linux?
l A fully-networked Unix-like operating system
l Multi-user, multitasking, multiprocessor system

–  Fundamental in the system’s design and
implementation

l Both command-line and graphical interfaces
l Coexists with other operating systems
l Runs on multiple platforms
l Distribution includes the source code!

The Linux System

Thanks again to Chandra Krintz and Kevin Sanft.

Linux kernel – the actual OS

l Manages processes:
– Starts, stops, suspends, swaps, manages inter-

process communication, …
– Maintains their state

l Manages files (and directories)
l Manages main memory
l Manages disk operations

CPU scheduling

l Kernel sends interrupt to a process to give
another process a turn to use the CPU

l  Processes can give up CPU when they
don’t need it (e.g. waiting on I/O device)

Processes request services from
the kernel in two ways
l  1. Using system calls (read, write, fork, …)

– OOP idea: these are the kernel’s interface
– Btw, processes access devices just like files –

that’s how they are represented by the kernel,
and they occupy places in the file system
l  Use open, close, read, write, release, seek, …

l  2. Or indirectly, through shell commands
(including programs) or library functions
that, in turn make use of system calls

Linux file system
l  Rooted,

hierarchical
–  Data files are

stored in
directories

l  A file’s (full)
pathname
starts at the
root
–  /etc/passwd
–  /home/neale/b

Directories

User home
directories

Data files

root

Special file names
l  . (by itself) The current directory

–  ./a is the same as a
l  .. The parent (toward root) directory

–  ../jane/x go up one level then look in
directory named jane for x

l  ~ Your home directory
–  ~harvey Username harvey’s home directory

l  Have to “escape” spaces with a backslash
–  my\ file\ name\ with\ spaces
–  Moral: don’t use spaces in file or directory names!

Basic user interface is the shell

Shell

l A program that runs in a terminal and
provides a command-line interface for user

l Also an interpreter that executes user
commands

l And a powerful programming language
–  Shell script – a sequence of commands in a file

l Lots of different shells to choose from
–  sh, csh, tcsh, bash …
–  We’ll focus on bash (and sh scripts) in this course

Shell scripts
Not covered in Reader (#1 just mentions)

This is just an introduction – learn much more
doing lab work

Bourne shell (sh) programs
l  Are text files with sh commands – e.g., myScript

–  To execute, can do sh myScript
l  The program runs in a new shell – called a child shell

–  Or chmod u+x myScript – then just ./myScript
l  Requires compatible default shell (sh and usually bash okay)

l  # – normally identifies a comment
–  Special case if line 1 – #!/bin/sh – identifies shell

l  Means use sh as child shell for this script – works in all shells
l  Can access command line arguments: $1 to $#

–  e.g., cp $1 $2 # copies first to second (if files)
–  e.g., echo $# # prints number of arguments

sh variables and assignment
l  name=“Jack Sprat” # note no spaces
l  echo “The name is $name” # need ‘$’
l  workdir=`pwd` # use `…` to assign result of …

–  Or can use $(pwd) instead of `pwd`
l  Similarly, echo “date and time is `date`”
l  Can read from standard input and calculate too

–  echo “enter value”
–  read val
–  doubleval=`expr $val + $val`

l  Or: doubleval=$((val + val)) # “c-style expr.”
–  Or just: echo “doubled: `expr $val + $val`”

sh control structures, and FYIs
l  An if-then-elif-else-fi statement

–  Expression is a test: test $# -gt 0
–  Or simpler: [$# -gt 0] # spaces mandatory
–  Can test file attributes too: -d, -f, -e, -r, -w, -x, …

l  A while-do-done statement: same expressions
l  A for-do-done statement: for variable in list

–  List is command line arguments if in clause omitted
l  FYI: can program any shell, but different syntax

–  Also “scripting languages” (e.g., Perl, Python, …)
l  Examples at ~mikec/cs32/demos/scripts/

