
More OS – processes

Starting Reading #3

Processes
l  A process is an executable, machine language program

that the OS (Linux) has been asked to run
–  Copied to memory, and assigned a process ID (PID)
–  Scheduled for execution by the CPU

l  Processes create other processes via system calls

–  A program (e.g., in C or C++) creates a new process
and terminates itself with a call to exec

–  A program creates a child process by calling fork
–  e.g.: $> ./myscript

l  First line is: #!/bin/bash
l  bash runs (interprets script)

Steps to execute a program (sort)

Steps to execute a shell script

Process hierarchy
l  init – is PID 1, but all other processes have parents (so PPID)

–  The process hierarchy's depth is limited only by available
virtual memory

l  A process may control the execution of any of its descendants
–  Can suspend or resume it
–  Can alter its relative priority
–  Can even terminate it completely

l  By default, terminating a process will terminate all of its
descendants too
–  So terminating the root process will terminate the session

Example Linux process hierarchy

(From Linux-specific version of Sarwar et al. text)

Linux process states
l  Just one

process can be
"running" at
any one time

l  OS has other
processes in
various states

l  A process
may be cycled
through many
states before it
terminates

Meanings of Linux process states

More
states

From: Bulletproof
Unix by Tim
Gottleber, 2003

Foreground and background
l  When a command is executed from the prompt and runs

to completion at which time the prompt returns, it is said
to run in the foreground

l  When a command is executed from the prompt followed
by the token '&' on the command line, the prompt
immediately returns while the command is said to run in
the background

l  Programs that interact with a user should be run in the
foreground

l  Programs that execute slowly and without intervention
belong in the background – so other work can get done!
–  e.g., daemons (background processes for system administration)

User control of process state
l  Terminate a foreground process with ctrl-C
l  Send running foreground process to background by ctrl-Z

-bash-4.2$ find / *.txt > /dev/null 2> /dev/null
 ß entered ctrl-Z here
[1]+ Stopped find / *.txt > /dev/null 2> /dev/null
-bash-4.2$ ß can execute more commands while find works
–  If enter fg 1 now, job 1 will execute in foreground again

l  Use ps to find PIDs of running processes
-bash-4.2$ ps
 PID TTY TIME CMD
20637 pts/4 00:00:00 bash
21581 pts/4 00:00:02 find
21632 pts/4 00:00:00 ps

l  Terminate a background process with kill command
bash-4.2$ kill -9 21581 ß -9 is the "sure kill" signal number
-[1]+ Killed find / *.txt > /dev/null 2> /dev/null

Fields of ps -l output (cont. next slide)

Fields of ps -l output (cont.)

next slide.

Process state abbreviations

