
Object-oriented perspective
Operating system = computer interface

Shell/libraries/system calls = OS interface

Will return to OS topics in
upcoming lectures. Now:
OO intro.

Starting Reader #2

Objects

l  Include things
– Stack, queue, list, …
– Window, spaceship, recipe, …

l Also include concepts
– Power, trajectory, mood, …

l Can represent people, places, roles, …
l  In programming: an object is a software

entity encapsulating data and/or methods

Imperative programming (not OOP)
l  Data, and the operations that manage the data are

separate entities (physically and logically)

l  What are implications of this programming style?

Kay’s Description of OOP
1.  Everything is an object.
2.  Objects perform computations by making

requests of each other through the passing of
messages.

3.  Every object has its own memory, which
consists of other objects.

4.  Every object is an instance of a class. A class
groups similar objects.

5.  The class is the repository for behavior
associated with an object.

6.  Classes are organized into a singly-rooted tree
structure, called an inheritance hierarchy.

Alan Kay:
“Simple
things
should be
simple,
complex
things
should be
possible.”

Solving problems with objects

l  First decide what objects are needed
–  Instead of what functions are required
– And instead of how specifically to handle data

l Then give each object responsibilities
– Which probably include storing some data and

performing some functions
l  Finally, have objects interact by sending

messages (usually method calls) to one another
–  i.e., they collaborate to fulfill responsibilities

T. Budd’s “real life” example

l  Chris decides to send flowers to his friend Robin
l  First he selects an agent: Fred, a capable florist

–  Then he sends a message to Fred – not unlike:
 fred.sendBouquet(1, &robin);

l  The next step is Fred’s responsibility
–  Chris does not participate in this part of the process
–  Likely that many other agents do participate though!

l  Finally Fred probably sends a message to Chris:
 chris.pay(bouquetPrice, this);

Elements of OOP - Objects

l  1. Everything is an object
–  Actions in OOP are performed by agents, called

instances or objects.
l  Several agents in the example scenario, including

Chris, Robin, Fred, the florist in Robin’s city,
driver, flower arranger, grower
–  Each agent has a part to play, and the result is

produced when all work together in the solution of a
problem.

Elements of OOP - Messages
l  2. Objects perform computations by making

requests of each other through the passing of
messages.
–  Actions in OOP are produced in response to requests

for actions, called messages. An instance may accept a
message, and in return will perform an action and
return a value.

l  To begin the process of sending the flowers,
Chris gives a message to Fred. She in turn gives
a message to the florist in Robin’s city, who
gives another message to the driver, and so on.

Information hiding

l Notice how a user of a service being
provided by an object, need only know the
name of the messages that the object will
accept.
– They need not have any idea how the actions

performed in response to these requests will
be carried out.

l Having accepted a message, an object is
responsible for carrying it out.

Receivers and behavior
l  Messages differ from traditional function

calls in two very important respects:
a)  A designated receiver accepts the message
b)  The interpretation of the message may be

different, depending upon the receiver
l  Although different objects may accept the

same message, the actions (behavior) the
object will perform will likely be different

–  Might not even know what behavior to perform
until run-time – a form of late binding

Elements of OOP – Recursive
Design

l  3. Every object has its own
memory, which consists of
other objects.
–  The structure of the part mirrors

the structure of the larger unit.
l  Principle of non-interference:
“Ask not what you can do to
your data structures, but ask
what your data structures can
do for you.” (Timothy Budd)

Elements of OOP - Classes

l  4. Every object is an instance of a class. A
class groups similar objects.
– Fred is an instance of the class Florist

l  5. The class is the repository for behavior
associated with an object.
– All objects that are instances of a class use the

same method in response to similar messages.

Elements of OOP - Inheritance
l  6. Classes are

organized into a
singly-rooted tree
structure, called an
inheritance hierarchy

l  Data and general
behavior at one
abstraction level
extend to lower levels
–  But can override

behavior (a later topic)

Levels of abstraction 1
l  Communities of interacting objects

–  Internally: within the program system
–  And externally: team of programmers, each

responsible for different parts of the system
l  Focus here is on communication at the

highest level of abstraction
–  i.e., lines of communication between the agents

Packages and Namespaces
l  Used to surround a collection of objects (a

small community in itself) with a layer

l  To control visibility from outside the module
–  A form of information hiding – promotes low

coupling, and thus modifiability, reuse potential,
and so on

Levels of abstraction 2
l  Clients and servers – abstraction about the

relationship between two individual objects

–  Typically one is providing a service, and the other
is using the service

l  Note: not specifically web servers/clients – a
more general idea about interacting objects

Levels of abstraction 3, 4, …

l  3. Describing services
– Focus is on a server
–  Independent of clients
–  i.e., defining the interface

l  4. Implementing the interface – from point
of serving the client(s)

l … Implementing individual functions, and
other background features about which the
clients have no need to know

Finding the right abstraction level

l  A critical problem to solve in early stages of
development – not easy, and no “right way”
–  Must determine what details are appropriate at

each level of abstraction
–  And (often more importantly) must decide what

details should be omitted – to be considered later
l  Don’t want to ignore important information

–  But don’t want to manage too much information,
or have excessive information hide critical details

