
Inheritance (with C++)
Starting to cover Savitch Chap. 15

Inheritance Basics

l  A new class is inherited from an existing class
l  Existing class is termed the base class

–  It is the "general" class (a.k.a. superclass, or parent)
l  New class is termed the derived class

–  It is the "specific" class (a.k.a. subclass, or child)
–  Automatically has (i.e., "inherits") all of the base class's

member functions and variables
–  Can define additional member functions and variables

l  And override inherited virtual functions (but that's a later topic)

Inheritance begets hierarchies
l  "Is a" relationships
l  Imagine:
class Basketball

is derived from
class Ball

l  Then:
any Basketball is a Ball
l  Reverse not always true: a Ball can be a
Football, or a Baseball, or …

Base class example: Employee
class Employee {
public:
 Employee();
 Employee(string theName, string theSsn);
 string getName() const;
 string getSsn() const;
 double getNetPay() const;
 void setName(string newName);
 void setSsn(string newSsn);
 void setNetPay(double newNetPay);
 void printCheck() const;
private:
 string name;
 string ssn;
 double netPay;
};

Derived class: HourlyEmployee
class HourlyEmployee : public Employee {
 // Instantly inherits all methods and data of class Employee
public:
 HourlyEmployee();
 HourlyEmployee(string theName, string theSsn,
 double theWageRate, double theHours);
 void setRate(double newWageRate);
 double getRate() const;
 void setHours(double hoursWorked);
 double getHours() const;
 void printCheck(); // plan to redefine printCheck function
private:
 double wageRate; // new data specific to this derived class
 double hours;
};

Writing derived classes
l  3 possibilities for member functions:

–  Inherit – i.e., do nothing
–  Redefine – have new method act differently
–  Define new – add abilities not in base class at all

l  2 possibilities for member variables:
–  Inherit – though if private, may not directly access/set
–  Define new – more data in addition to base class data

l  Notice: cannot redefine member variables –
attempts to do so will create "shadow variables"
–  i.e., just creates a new variable with the same name,

effectively hiding the inherited one – usually a mistake

Derived class constructors
l  A base class constructor is always invoked first

–  i.e., first task of derived class constructor's initialization list
–  If no explicit call, base class default constructor will be called

implicitly (compile error if base class has no default ctor)
l  Must explicitly call to use an alternative base class ctor

–  Syntax: BaseClassName(arg1, arg2, …)
l  Derived Employee example:

HourlyEmployee::HourlyEmployee(string name,
 string number, double rate, double hours)
 : Employee(name, number), wageRate(rate),
 hours(hours)
{ }

–  Properly initializes name, ssn: private Employee data

A subclass object's composition
l Remember: a derived class definition just

defines part of the resulting object
– The rest of the object is the base class portion

name:
ssn:

netPay:

wageRate:
hours:

HourlyEmployee

Employee portion

Redefining ≠ overloading

l Redefining only applies to a derived class
– Same parameter list (i.e., same "signature")
– Essentially "re-writes" the same function

l Overloading can happen in base or derived
– Different parameter list – different signature
– Defining a new function with the same name

l Recall definition of a signature:
– Name(parameter list)
– Does not include return type, and '&' ignored

Accessing redefined base function

l A redefined base class definition is not "lost"
Employee jane;

HourlyEmployee sally;
jane.printCheck(); // Employee function
sally.printCheck(); // HourlyEmployee function
sally.Employee::printCheck();
 // uses scope resolution to call Employee function!

l Often done while implmenting derived class
– let base function do some of the work

Some functions are not inherited

l  All "normal" functions in the base class are
inherited in the derived class

l  The exceptions ("abnormal" functions?):
–  Constructors and destructor
–  And assignment operator

l  Compiler generates default versions if you don't
redefine them in the derived class
–  But remember that can be problematic if pointing to

dynamic memory, so often should redefine

Subclass operator= and copy ctor
l  Although not inherited, a derived class typically

must use the base class's versions
l  e.g., an operator= in class D : public B

D& D::operator=(const D &right) {
 // first call assignment operator of base class to take

 // care of all the inherited member variables
 B::operator=(right);
 ... // then set new variables of derived class
}

l  Copy ctor must use base class version too
D::D(const D &other) : B(other), ...{ }

Destructors in derived classes

l Easy to write if base class dtor is correct
– No need to call base class dtor – because it is

called automatically at the end of the derived
class’s dtor

l  So derived class destructors need only
worry about derived class variables
– Usual purpose: release resources allocated

during the object's life
– Let base class dtor handle inherited resources

Examples: PFArrayD and …Bak

l Base class PFArrayD:
– Stores a pointer to a double array on free store

l  Array has a fixed capacity after construction

– Has mgr., other functions, plus [] and = ops
l Derived class PFArrayDBak:

– Has pointer to its own array – can be used to
backup and restore data in base class's array

– Redefines ctors, dtor and operator=

~mikec/cs32/demos/
SavitchAbsolute_ch14/

PFArrayD.h

…PFArrayDBak

Writing derivable classes
l  Always provide a constructor that can be called

with no arguments
l  Control subclass' access to member variables and

functions as appropriate – three choices:
–  public members are accessible to all other classes
–  private members are not directly accessible to any

other class – should be used for most variables, and
also appropriate for "helper" functions

–  A third choice is protected member access
l  Only subclasses (those derived from this one) can access
l  Some consider it bad OOP practice – violates info hiding

protected / private inheritance

l  Note: rarely used; frankly a little weird
–  Destroys “is a” relation of derived class object

l  Protected inheritance – all public members in the
base class become protected members in the
derived class

 class SalariedEmployee : protected Employee {…}

l  Private inheritance – all members in the base class
become private in the derived class

 class SalariedEmployee : private Employee {…}

Many more inheritance issues
l  For instance: Sometimes it is better to use “has

a” instead of “is a” relationship
–  Means one class has an object of another class
–  Generally a more flexible design

l  Can also do multiple inheritance in C++
class ClockRadio :
 public Radio, public AlarmClock;
–  Tricky though (more later, after virtual keyword)

l  “Slicing” and “upcasts” – more to come
l  First an application: simulating an ecosystem

–  organism.h and pondlife.cxx (.../demos/ecosystem/)

