
Virtual functions – concepts

l Virtual: exists in essence though not in fact
l  Idea is that a virtual function can be
“used” before it is defined
– And it might be defined many, many ways!

l Relates to OOP concept of polymorphism
– Associate many meanings to one function

l  Implemented by dynamic binding
– A.k.a. late binding – happens at run-time

Polymorphism example: figures
l  Imagine classes for several kinds of figures

–  Rectangles, circles, and ovals (to start)
–  All derive from one base class: Figure

l  All “Figure” objects inherit: void draw()
–  Of course, each one implements it differently!

Rectangle r;
Circle c;
r.draw(); // Calls Rectangle class’s draw()
c.draw(); // Calls Circle class’s draw

l  Nothing new here yet …

Figures example cont. – center()
l  Consider that base class Figure has functions

that apply to “all” figures
l  e.g., center(): moves figure to screen center

–  Erases existing drawing, then re-draws the figure

–  So Figure::center() uses draw() to re-draw
l  But which draw() function will be used?

–  We’re implementing base class center() function, so
we have to use the base class draw() function. Right?

l  Actually, it turns out the answer depends on how
draw() is handled in the base class

Poor solution: base works hard
l  Figure class tries to implement draw to work for

all (known) figures
–  First devise a way to identify a figure’s “type”
–  Then Figure::draw() uses conditional logic:
if (/* the Figure is a Rectangle */)
 Rectangle::draw();
else if (/* the Figure is a Circle */)
 Circle::draw();
...

l  But what if a new kind of figure comes along?
–  e.g., how to handle a derived class Triangle?

Better solution: virtual function
l  Base class declares that the function is virtual:

virtual void draw() const;

l  Remember it means draw() exists in essence
l  Such a declaration tells compiler “I don’t know

how this function is implemented, so wait until
it is used in a program, and then get its
implementation from the object instance.”

l  The instance will exist in fact (eventually)
–  Therefore, so will the implementation at that time!

l  Function “binding” happens late – dynamically

Another virtual function example
(Sale, DiscountSale, Display 15.11)
l  Record-keeping system for auto parts store

–  Track sales, compute daily gross, other stats
–  All based on data from individual bills of sale

l  Problem: lots of different types of bills
l  Idea – start with a very general Sale class

that has a virtual bill() function:
 virtual double bill() const;

l  Rest of idea – many different types of sales
will be added later, and each type will have its
own version of the bill() function

Sale functions: savings and op <

double Sale::savings(const Sale &other) const
{

 return (bill() – other.bill());
}

bool operator < (const Sale &first,
 const Sale &second)

{
 return (first.bill() < second.bill());

}

l  Notice both functions use member function bill()!

A class derived from Sale
class DiscountSale : public Sale {
public:
DiscountSale();
DiscountSale(double price,

 double discount);
double getDiscount() const;
void setDiscount(double newDiscount);
double bill() const; // implicitly virtual

private:
double discount; // inherits price

};

DiscountSale’s bill() function

l  First note – it is automatically virtual
–  Inherited trait, applies to any descendants
– Also note – rude not to declare it explicitly

l Of course, definition never says virtual:
double DiscountSale::bill() const {
 double fraction = discount/100;
 return (1 – fraction)*getPrice();
}

– Must use access method as price is private

The power of virtual is actual!

l  e.g., base class Sale written long before
derived class DiscountSale

l  Sale had members savings and ‘<’ before
there was any idea of class DiscountSale

l Yet consider what the following code does
DiscountSale d1, d2;

d1.savings(d2); // calls Sale’s savings function
l  In turn, class Sale’s savings function

uses class DiscountSale’s bill function.
Wow!

Clarifying some terminology

l Recall that overloading ≠ redefining
l Now a new term – overriding means

redefining a virtual function
l  Polymorphism is an OOP concept

– Overriding gives many meanings to one name
l Dynamic binding is what makes it all work
l  “Thus,” as Savitch puts it, “polymorphism,

late binding, and virtual functions are
really all the same topic.”

Why not all virtual functions?

l  Philosophy issue: pure OOP vs. efficiency
– All functions are virtual by default in another

popular programming language (Java) – there
must take steps to make functions non-virtual

– C++ default is non-virtual – programmer must
explicitly declare (except when inherited trait)

l Virtual functions have more “overhead”
– More storage – for class virtual function table
– Slower – a look-up step; less optimization

Simpler polymorphism demo
(~mikec/cs32/demos/figures)
l  Base: Figure has virtual void print()

–  print() is used in printAt(lines)
l  Derived: Rectangle just overrides print()
l  Which print() is used in the following code?
 Figure *ptr = new Rectangle,
 &ref = *new Rectangle('Q', 5, 10, 4);
 ptr->printAt(1); ref.printAt(1);

l  What if print() was not declared virtual?
l  What if line 2 above just had ref, not &ref?

–  To know why, see “slicing” … a few slides from now

“Pure virtual” and abstract classes

l  Actually class Figure’s print() function is useless
–  It should have been a pure virtual function:
virtual void draw() const = 0;

–  Says not defined in this class – means any derived
class must define its own version, or be abstract itself

l  A class with one or more pure virtual functions is
an abstract class – so it can only be a base class
–  An actual instance would be an incomplete object
–  So any instance must be a derived class instance

A sorting hierarchy See …/demos/sorting

Types when inheritance is involved

l  Consider: void func (Sale &x) {…} or
similarly: void func (Sale *xp) {…}
–  What type of object is x (or *xp), really? Is it a Sale?
–  Or is it a DiscountSale, or even a CrazyDiscountSale?

l  Just Sale members are available
–  But might be virtual, and Sale might even be abstract
–  & and * variables allow polymorphism to occur

l  Contrast: void func (Sale y) {…}
–  What type of object is y? It’s a Sale. Period.
–  Derived parts are “sliced” off by Sale’s copy ctor
–  Also in this case, Sale cannot be an abstract class

Type compatibility example
l  Consider:

Dog d; Pet p;
d.name = "Tiny";
d.breed = "Mutt";
p = d; // “slicing” here
–  All okay – a Dog “is a” Pet

l  Reverse is not okay
–  A Pet might be a Bird, or …

l  And p.breed? Nonsense!
l  Also see slicing.cpp at
~mikec/cs32/demos/

class Pet {
public: // pls excuse bad info hiding
 string name;
 virtual void print();
};

class Dog : public Pet {
public:
 string breed;
 virtual void print();
};

Destructors should be virtual

l Especially if class has virtual functions
l Derived classes might allocate resources

via a base class reference or pointer:
Base *ptrBase = new Derived;

... // a redefined function allocates resources
delete ptrBase;

l  If dtor not virtual, derived dtor is not run!
l  If dtor is virtual – okay: run derived dtor,

immediately followed by base dtor

Casting and inherited types
l  Consider again: Dog d; Pet p;
l  “Upcasting” (descendent to ancestor) is legal:

p = d; // implicitly casting “up”
p = static_cast<Pet>(d); // like (Pet)d
–  But objects sliced if not pointer or reference

l  Other way (“downcasting”) is a different story:
d = static_cast<Dog>(p); // ILLEGAL
–  Can only do by pointer and dynamic cast :
Pet *pptr = new Dog; // we know it’s a Dog
Dog *dptr = dynamic_cast<Dog*>(pptr)
–  But can be dangerous, and is rarely done

Multiple inheritance and virtual
l  Idea: a ClockRadio is a Radio and an AlarmClock

–  But what if class Radio and class AlarmClock are both derived
from another class, say Appliance?

–  Doesn’t each derived object contain an Appliance portion?
–  So wouldn’t a Clockradio have two copies of that portion, and

how can such a scheme possibly work properly?
l  Answer: it can work, but only by using virtual inheritance!

class Radio : virtual public Appliance;
class AlarmClock : virtual public Appliance;
class ClockRadio : public Radio, public AlarmClock;

–  Now a Clockradio has just one Appliance portion, not two
l  See demo code in ~mikec/cs32/demos/multi-inherit
l  But note: hierarchy is still messed up, and still lots of

chances for ambiguity – best to avoid multi-inheritance!

How do virtual functions work?
l  Not exactly magic, but safe to consider it so
l  virtual tells compiler to “wait for instructions”

until the function is used in a program
l  So the compiler creates a virtual function table for

the class, with pointers to all virtual functions
l  In turn, every object of such a class will be made

to store a pointer to its own class’s virtual function
table – try …/demos/sizeofvirtual.cpp

l  At runtime: follow the pointers to find the code!

