
Memory and C/C++ modules
From Reading #5 and mostly #6

More OOP topics (templates;
libraries) as time permits later

Program building
l  Have: source code – human readable instructions
l  Need: machine language program – binary

instructions and associated data regions, ready to
be executed

l  g++/gcc does two basic steps: compile, then link
–  To compile means translate to object code
–  To link means to combine with other object code

(including library code) into an executable program

Compile Linkmypgm.cpp
(source code)

mypgm
(executable)

mypgm.o
(object code)

Link combines object codes
l  From multiple source files and/or libraries

–  e.g., always libc.a

l  Use -c option with gcc/g++ to stop after creating .o file
-bash-4.2$ gcc -c mypgm.c ; ls mypgm*
mypgm.c mypgm.o

–  Is necessary to compile a file without a main function
l  Later link it to libraries – alone or with other object files:

-bash-4.2$ gcc -o mypgm mypgm.o ; ls mypgm*
mypgm mypgm.c mypgm.o

Compile Link

Link

mypgm.c
(source code)

mypgm
(executable)

mypgm.o
(object code)

libc.a
(library file)

Compiling: 3 steps with C/C++

l  First the preprocessor runs
–  Creates temporary source code with text substitutions as directed
–  Use gcc -E (or just cpp) to run it alone – output goes to stdout

l  Then the source is actually compiled to assembly code
–  Use gcc -S to stop at this step and save code in .s file

l  Last, assembler produces the object code (machine language)

"Compile"

Preprocess Assemble

Compile

mypgm.c
(source code)

mypgm.o
(object code)

(source code
with preproc.
subsitutions)

mypgm.s
(assembly

code)

More about the C preprocessor

l  Create a “symbolic constant” by #define
–  e.g., #define KPM 1.609344

l  Create a “macro” by #define with parameters
–  e.g., #define TRIPLE(a) (3 * (a))

l  Notice macro text not just 3 * a
–  Then evaluate TRIPLE(2 + 4) for instance

l  Also #a in macro text converts a to a string,
while a ## b concatenates a and b to a string

l  See/try …demos/macros

Compiling and linking
source
file 1

source
file 2

source
file N

object
file 1

object
file 2

object
file N

library
object
file 1

library
object
file M

load
file

usually performed by a compiler, usually in one uninterrupted sequence

linking
(relocation +

linking)
compilation

Usually performed by gcc/g++ in one uninterrupted sequence

Layout of C/C++ programs

Source code
ß

… becomes

Object

module à

object 1 definition
object 2 definiton

object 4 definition

object 3 definition

...
...

...
...

static object 5 definition

function 1

function 2

static object 5 definition

function 3

Header section

Machine code section
(a.k.a. text section)

Initialized data section

Symbol table section

Relocation information
section

A sample C program – demo.c
l  Has text section

of course: the
machine code

l  Has initialized
global data: a

l  Uninitialized
global data: b

l  Static data: k
l  Has a local

variable: i

#include <stdio.h>

int a[10]={0,1,2,3,4,5,6,7,8,9};
int b[10];

void main(){
 int i;
 static int k = 3;

 for(i = 0; i < 10; i++) {
 printf("%d\n",a[i]);
 b[i] = k*a[i];
 }
}

A possible structure of demo.o
Offset Contents Comment
Header section
0 124 number of bytes of Machine code section
4 44 number of bytes of initialized data section
8 40 number of bytes of Uninitialized data section (array b[])

(not part of this object module)
12 60 number of bytes of Symbol table section
16 44 number of bytes of Relocation information section
Machine code section (124 bytes)
20 X code for the top of the for loop (36 bytes)
56 X code for call to printf() (22 bytes)
68 X code for the assignment statement (10 bytes)
88 X code for the bottom of the for loop (4 bytes)
92 X code for exiting main() (52 bytes)
Initialized data section (44 bytes)
144 0 beginning of array a[]
148 1
:
176 8
180 9 end of array a[] (40 bytes)
184 3 variable k (4 bytes)
Symbol table section (60 bytes)
188 X array a[] : offset 0 in Initialized data section (12 bytes)
200 X variable k : offset 40 in Initialized data section (10 bytes)
210 X array b[] : offset 0 in Uninitialized data section (12 bytes)
222 X main : offset 0 in Machine code section (12 bytes)
234 X printf : external, used at offset 56 of Machine code section (14 bytes)
Relocation information section (44 bytes)
248 X relocation information

Object module
contains neither
uninitialized
data (b), nor
any local
variables (i)

Reminder: compiling & linking
source
file 1

source
file 2

source
file N

object
file 1

object
file 2

object
file N

library
object
file 1

library
object
file M

load
file

usually performed by a compiler, usually in one uninterrupted sequence

linking
(relocation +

linking)
compilation

Usually performed by gcc/g++ in one uninterrupted sequence

Linux object file format
l  “ELF” – stands for Executable and

Linking Format
–  A 4-byte magic number followed by a series

of named sections
l  Addresses assume the object file is

placed at memory address 0
–  When multiple object files are linked

together, we must update the offsets
(relocation)

l  Tools to read contents: objdump and
readelf – not available on all systems

\177ELF	
.text	
…	
.rodata	
…	
.data	
…	
.bss	
…	
.symtab	
…	
.rel.text	
…	
.rel.data	
…	
.debug	
…	
.line	
…	
Sec<on	
header	table	

ELF sections
l  .text = machine code (compiled program

instructions)
l  .rodata = read-only data
l  .data = initialized global variables
l  .bss = “block storage start” for

uninitialized global variables – actually
just a placeholder that occupies no space
in the object file

l  .symtab = symbol table with information
about functions and global variables
defined and referenced in the program

\177ELF	
.text	
…	
.rodata	
…	
.data	
…	
.bss	
…	
.symtab	
…	
.rel.text	
…	
.rel.data	
…	
.debug	
…	
.line	
…	
Sec<on	
header	table	

ELF Sections (cont.)
l  .rel.text = list of locations in .text section

that need to be modified when linked
with other object files

l  .rel.data = relocation information for
global variables referenced but not
defined

l  .debug = debugging symbol table; only
created if compiled with -g option

l  .line = mapping between line numbers in
source and machine code in .text; used
by debugger programs

\177ELF	
.text	
…	
.rodata	
…	
.data	
…	
.bss	
…	
.symtab	
…	
.rel.text	
…	
.rel.data	
…	
.debug	
…	
.line	
…	
Sec<on	
header	table	

Reminder again: … linking
source
file 1

source
file 2

source
file N

object
file 1

object
file 2

object
file N

library
object
file 1

library
object
file M

load
file

usually performed by a compiler, usually in one uninterrupted sequence

linking
(relocation +

linking)
compilation

Creation of a load module

Header Section

Machine Code
Section

Initialized data
Section

Symbol table
Section

Header Section

Machine Code
Section

Initialized data
Section

Symbol table
Section

Header Section

Machine Code
Section

Initialized data
Section

Symbol table
Section

Object Module A

Object Module B

Load Module
l  Interleaved from

multiple object
modules
–  Sections must be
“relocated”

l  Addresses relative to
beginning of a
module
–  Necessary to translate

from beginnings of
object modules

l  When loaded – OS
will translate again to
absolute addresses

Loading and memory mapping

(logical) address
space of

program 1

(logical)
address
space of

program 2

Header Section

Machine Code
Section

Initialized data
Section

Symbol table
Section

Code

Static data

Dynamic data

Unused
logical

address
space

initialized

uninitialized

load module

Stack

Code

Static data

Dynamic data

(logical) address
space of

program 3

Stack

Unused
Logical
address
space

loading
memory
mapping

PHYSICAL MEMORY

OPERATING
SYSTEM

memory
mapping

Code

Static data

Dynamic data

Unused
logical

address
space

Stack

l  Includes
memory
for stack,
dynamic
data (i.e.,
free store),
and un-
initialized
global data

l  Physical
memory is
shared by
multiple
programs

From source
program to
“placement” in
memory during
execution

int a[10]={0,1,2,3,4,5,6,7,8,9};
int b[10];

void main()
{
 int i;
 static int k = 3;

 for(i = 0; i < 10; i++) {
 printf("%d\n",a[i]);
 b[i] = k*a[i];
 }/*endfor*/
}/*end main*/

array a[]

array b[]
variable k

code for top of for loop

code for call to printf()
code for b[i] = k*a[i]

code for printf()

physical memory

source program

Dynamic memory allocation

PHYSICAL MEMORY

Before dynamic memory allocation

Code

Static data

Dynamic data

Unused
logical

address
space

initialized

uninitialized

(logical) address
space of the

program
OPERATING
SYSTEM

Stack

PHYSICAL MEMORY

After dynamic memory allocation

Code

Static data

Dynamic data

Unused
logical

address
space

initialized

uninitialized

(logical) address
space of the

program
OPERATING
SYSTEM

Stack

increment of
dynamic data

Sections of an executable file
Segments:

Variables and objects in memory

l  Variables and data objects are data containers
with names

l  The value of the variable is the code stored in the
container

l  To evaluate a variable is to fetch the code from
the container and interpret it properly

l  To store a value in a variable is to code the value
and store the code in the container

l  The size of a variable is the size of its container

01000001 01000010 00010100
'A' 16916

Overflow is when a data code is
larger than the size of its container
l  e.g., char i; // just 1 byte
int *p = (int*)&i; // legal
*p = 1673579060;

// result if "big endian" storage:
l  If whole space (X) belongs to this program:

–  Seems OK if X does not contain important data for rest of
the program’s execution

–  Bad results or crash if important data are overwritten
l  If all or part of X belongs to another process, the

program is terminated by the OS for a memory
access violation (i.e., segmentation fault)

variable i

01001001100101100000001011010100

X

More about overflow
l  Previous slide showed example of "right

overflow" – result truncated (also warning)

l Compilers handle "left overflow" by
truncating too (usually without any warning)
– Easily happens: unsigned char i = 255;

i++; // What is the result of this increment?

010001… 01000001

11111111

00000000 1

Placement & padding – word
l  Compiler places

data at word
boundaries
–  e.g., word = 4 bytes

l  Imagine:
struct {
 char a;
 int b;
} x;
–  Classes too

variable x

x.a x.b

01001001 10010110000000101101010001101101

a machine word a machine word

data
completely
ignored, junk
padding

Compilers do it this way

variable x

0100100110010110000000101101010001101101

x.a x.b

a machine worda machine word

Not like this!

See/try ~mikec/cs32/demos/padding.cpp

Pointers are data containers too

l  As its value is a memory
address, we say it "points"
to a place in memory

l  It points at just 1 byte, so it
must "know" what data type
starts at that address
–  How many bytes?
–  How to interpret the bits?

l  Question: What is stored in
the 4 bytes at addresses
802340..802343 in the
diagram at right?
–  Continued next slide

8090346

byte with address
8090346

8090346

byte with address
8090346

int* p
integer

"data container"

01000001010000100100001101000100...0101 1100...

address
802340

address
802343

address
802342

address
802341

What is ?

l  Could be four chars: ‘A’,
‘B’, ‘C’, ‘D’

l  Or it could be two shorts:
16961, 17475
–  All numerical values shown here

are for a "little endian" machine
(more about endian next slide)

l  Maybe it’s a long or an
int: 1145258561

l  It could be a floating point
number too: 781.035217

...0101 1100...

address
802340

802340 char* b ASCII code for 'A'

01000001010000100100001101000100

...0101 1100...

address
802340

802340 short* s binary code for short 16916
(on a little endian machine)

01000001010000100100001101000100

...0101 1100...

address
802340

802340 int* p binary code for int 1145258561
(on a little endian machine)

01000001010000100100001101000100

...0101 1100...

address
802340

802340 float* f binary code for float 781.035217
(on a little endian machine)

01000001010000100100001101000100

01000001010000100100001101000100...0101 1100...

address
802340

address
802343

address
802342

address
802341

Beware: two different byte orders
l  Matters to actual value of anything but chars
l  Say: short int x = 1;
l  On a big endian machine it looks like this:

–  Some Macs, JVM, TCP/IP "Network Byte Order"
l  On a little endian machine it looks like this:

–  Intel, most communication hardware
l  Only important when dereferencing pointers

–  See/try ~mikec/cs32/demos/endian.c

00000000 00000001

00000001 00000000

Dynamic memory allocation
l  OS memory manager (OSMM) allocates large

blocks at a time to individual processes
l  A process memory manager (PMM) then takes over

Operating System

Process memory
management

Process memory
management

Process
1

Process
2

OS memory
manager

large memory
blocks

large memory
blocks

Memory management by OSMM
l  Essentially, a simple "accounting" of what process

owns what part(s) of the memory
l  Memory allocation – like making an entry in the

accounting "book" that this segment is given to
this process for keeps

l  Memory deallocation – an entry that this segment
is no longer needed (process died), so it’s "free"

l  OSMM usually keeps track of allocated memory
blocks in a binary heap, to quickly search for
suitable free blocks – hence the name "system
heap" (traditionally called "free store" in C++)

PMM handles a process’s memory
l  A "middle manager" – intermediary to OSMM
l  Usually keeps a dynamic list of free segments
l  When program requests more memory – PMM

searches its list for a suitable segment
l  If none found, asks OSMM for another block

–  OSMM searches its heap and delivers a block
–  Then PMM carves out a suitable segment

l  Can be a significant time delay while all this
goes on – which can slow performance if a
program makes many allocation requests

Dynamic memory in C programs

l  Use C standard functions – all in <stdlib.h>
–  All use void* – means "any type" – no dereferencing

 void *malloc(size_t size);

–  Get at least size bytes; contents are arbitrary!
 void *calloc(size_t n, size_t elsize);

–  Get at least n*elsize bytes; contents cleared!
 void *realloc(void *ptr, size_t size);

–  Changes size of existing segment (at ptr)
–  IMPORTANT: ptr must have come by malloc or calloc
–  And beware dangling pointers if data must be moved

l  To deallocate, use void free(void *ptr);

Easier, better in C++ programs

l Allocate memory by operator new
– Easier than malloc and other C functions: just

need to specify type – object’s size is known
– Better than the C functions: also calls a

constructor to create the object properly
l Operator delete returns memory to the

free store that was allocated by new
– Also calls class destructor to keep things neat
– Use delete[] if deallocating an array

Dynamic arrays of C++ objects
l  MyClass *array = new MyClass[5];

– Creates an array of 5 MyClass objects
– Returns a pointer to the first object

l Default ctor is called for every object
l No way to call a different constructor

– So class must have a no-argument ctor
l  delete [] array;

– Calls dtor on all 5 objects
~mikec/cs32/demos/
dynarray.cpp

Using memory all over the place!

l  Fairly simple in C: an
object is either in
static memory, or on
stack, or on heap

l  C++ objects can "be"
more than one place!

l  So important in C++
to manage memory
even for stack objects
(with dynamic parts)

activation frame
of doit()

sample

salutation

dynamic memory
(heap)

h e y '\0'

static memory

sample

salutation

dynamic memory
(heap)

h e y '\0'

(about program on Reader p. 190)

Don’t corrupt the PMM: guidelines
l Never pass an address to free that was not

returned by malloc, calloc, or realloc
l Deallocate segments allocated by malloc,
calloc, or realloc only by using free

l Never pass address to delete (or delete[])
that was not previously returned by new

l Deallocate segments allocated by new
using exclusively delete
– And exclusively delete[] if array allocated

BTW: in general, don’t mix C and C++ ways to do things.

