
std::string

l  Encapsulates a sequence of characters
–  i.e., much more object-oriented than (char *)

l  Both a size and a capacity (for efficiency)
–  Both are mutable, and so are the characters

l  Member operator functions =, +=, []
l  Others include substr, insert, compare, clear, …
l  Nonmember: op<<, op>>, getline, op+, op==, …
l  See http://www.cplusplus.com/reference/string/ and

librarytools.cpp::stringDemo() in ~mikec/
cs32/demos/templates/

Starting Savitch Chapter 18

Standard template library (STL)
l  A framework of generic containers and algorithms

–  STL containers are class templates – for storing and
accessing parameterized data types

–  STL algorithms are function templates – mostly
involving contents of STL containers

l  Iterators are the framework’s linchpins
–  Essentially pointers to container elements

l  In fact, pointers into arrays usually qualify for the functions
–  Each container type has a set of possible iterators
–  The algorithms access container elements using these

iterators – so their use is standardized across containers

STL sequence containers
l  vector<typename> – basically a smart array

–  Overloaded [] makes it seem like an array once created
–  But unlike arrays, vectors grow dynamically as required, and

have methods like size(), empty(), clear(), insert(), …
l  list<typename> – a double-linked list

–  Best feature: quick insertion and removal of elements
–  But no random access – must settle for using bi-directional

iterators that provide access relative to existing elements
l  deque<typename> – a vector/list combination
l  See three related demo functions in librarytools.cpp

Adaptive sequence containers

l  Underlying data structure is another sequence
–  With access restricted in some defined way

l  stack<typename> – LIFO access
–  Basic operations are push(), pop(), and top()

l  queue<typename> – FIFO access
–  Operations are push(), pop(), and front()

l  priority_queue<typename>

–  push(), pop(), and top() (more like a stack than a queue)
l  But pop() and top() access “highest priority” element

Associative containers

l  Designed for accessing data by search keys
–  Main feature – quick insert()and find() operations

l  Sets – the data are the keys
–  set<typename, functor> – no duplicates allowed

l  The “functor” (function object) is used to order the elements

–  To have duplicates: multiset<typename, functor>
l  Maps – elements are key/data pairs

–  map<keyT, dataT, functor>, or allow duplicates
with multimap< keyT, dataT, functor>

STL algorithms
l  Function templates – mostly work with iterators

–  Idea – alternative to algorithms built into containers
l  Facilitates consistent handling of the various containers

l  Usual: alg(iterBegin, iterEnd, other args)
–  e.g., fill(vector.begin(), vector.end(), 0);
–  e.g., random_shuffle(v.begin(), v.end());
–  Demos: ~mikec/cs32/demos/templates/librarytools.cpp

l  Complete STL documentation available online
at http://www.cplusplus.com/reference/stl/ and
http://www.sgi.com/tech/stl/ and elsewhere

Libraries
l  What is a library?

–  A compiled, packaged collection of often-used code
l  Why libraries?

–  Convenient – already compiled; use again and again
–  Often allow for hardware/system-independent

programming – i.e., simpler and more “portable” code
l  Examples galore: C and C++ standard libraries,

plus STL, graphics libraries, …
l  Sometimes want to create your own libraries

–  Package together functions, related classes, class
hierarchies, templates – all ready for later use

Starting Reading #7
(Notice how the two course streams have met!)

Making a library
l  ar – Unix command to create an “archive” file

–  Mostly works like tar – to manage a package of files
% ls *.o

tool1.o tool2.o tool3.o
% ar q libtools.a *.o /* add all .o files to archive - quickly */
[% ranlib libtools.a] /* necessary for Berkeley Unix only */
l  Now just link a program to the library (in ‘.’):
% g++ -Wall -o mypgm mypgm.c –ltools –L.

l  Add/replace objects: ar r libtools.a xx/tool4.o
l  Just read archive table of contents and other info:
% ar tv libtools.a

Graphics libraries
l OOP idea: encapsulate calls

to graphics (hardware) devices
– Provide a common interface –

for using graphics on a wide
variety of systems and devices

l What’s the alternative?
– Calling system and device

driver-specific routines
– Not simple, and not portable

Application
program

Graphics
library

Operating
system

Graphics
display

Curses library
l  Very basic graphics library to control the

display of characters on a terminal screen
–  Not what most people call graphics, but cool
–  Without it, can only “print” to screen line by line

l  Source must: #include <curses.h>
l  Tell g++/gcc to link: -lncurses
l  Then uses curses functions to open a window,

and show any character anywhere inside it
–  e.g., ~mikec/cs32/demos/libs/rogue5.4.4

Animating graphics
l  Basic idea: move a drawing around screen
l  Three essential steps to dynamic graphics –

repeated over and over again in order
1.  Erase (or draw “blank” over) current drawing
2.  Move to new, nearby location, and redraw (making

sure drawing happens by flushing the buffer)
3.  Pause (“sleep”) so user can see drawing

l  Speed of the animation is controlled by how
long step 3 lasts – can vary for various parts

l  Examples …demos/libs/hooverexamples

X library
l  For graphical windows on Unix/Linux

–  Provides 2-D graphics (pixels) and limited user input
l  Design choice: no standard User Interface (GUI)

–  More flexible than MS Windows. Is that a good idea?

OpenGL library

GTK+ library

X library
Win 32 library

Direct X library3D graphics

User interface

User input

2D graphics

Window management

Unix system MS Windows system

Handling events
l  With a graphical user interface, the user decides

what to do and when to do it
–  Presses a key, releases a key, clicks the mouse, moves

the mouse, …
l  The program must be prepared to handle such

events promptly when they happen
–  And must ignore (1000s of) events that don’t matter

l  GUI programming is greatly facilitated by using
frameworks such as GTK+ and Win32
–  Or better: cross-platform frameworks like wxWidgets

wxWidgets architecture

l  Open source – see: http://wxwidgets.org/
–  Multi-programming language too (but needs inheritance)

