
Software development activities

l  Note “activities” – not “steps”
l  Often happening simultaneously
l  Not necessarily discrete

1.  Planning: mostly study the requirements
2.  Domain analysis: study the problem area
3.  System design: devise computer solution
4.  Implementation: write the code
5.  Testing, documentation, maintenance, …

Software engineering

l  A subset of system engineering
l  Covers all software development activities,

planning through maintenance
l  Also includes various management tasks

–  Determine project roles, and assign personnel
–  Create and monitor development schedules
–  Some client relations and customer support

l  Guided by CS theory
–  But really just heuristics, and often ad hoc

Professional, ethical responsibility

l Above all, do no harm! (Hippocratic Oath)

– NO VIRUSES or other malicious programs
– Avoid inventing “the bomb” or a plague, or …

l Basically demonstrate loyalty to employer,
clients, co-workers, country, humanity, …

l  See “Software Engineering Code of Ethics and
Professional Practice” by ACM/IEEE-CS at
https://www.acm.org/about-acm/code-of-ethics

Development process modeling
Requirements

Analysis

System
Design

Program
Design

Coding

Testing
(several steps)

Operation &
Maintenance

The
 Waterfall
 Model

l The
classic:

l  Step
after
step,
after
step, …

l Never
back up

Alternatives to waterfall model
l Okay, we

all agree –
this extreme
doesn’t
work either

l  Is there a
middle
ground?

Requirements
Analysis

System
Design

Unit
Testing

Software Development Reality

Integration
Testing

Maintenance

Delivery

System
Testing Coding

Program
Design

Considering risk

In a waterfall lifecycle,
high risk issues such as
integration and load test
may be tackled late.

Time

Potential
impact of

risks being
tackled

Requirements
Analysis Design Implement Integrate &

System Test

l  Research conclusion: it is wise to do some
implementing and testing early in the process

Engineering the risk factor
l  Spiral Model

–  Includes
frequent risk
analyses

l  Frequent
reevaluation
during an
extended
planning
stage

Testing and iterating
l Accounts for

requirement
changes and
mistakes

l Key idea:
plan to iterate

l But still a bit
too rigid?

Requirements
Analysis

System
Design

Program
Design

Coding

Unit & Inte-
gration Testing

Operation &
Maintenance

 The V Model

System
Testing

Acceptance
TestingValidate requirements

Verify design

Incremental / iterative process
l Hmmm … a hybrid that makes sense!

Requirements

Design

Implementation &
Test & Integration
& More Design

Final Integration
& System Test

Requirements

Design

4 weeks (for example)
The system grows
incrementally.

Feedback from
iteration N leads to
refinement and
adaptation of the
requirements and
design in iteration
N+1.

Iterations are fixed in
length, or timeboxed .

Time
Implementation &
Test & Integration
& More Design

Final Integration
& System Test

Iterating reduces risk overall

In an iterative lifecycle,
high-risk issues are
tackled early, to drive
down the riskiest project
elements.

Time

Potential
impact of

risks being
tackled

Iteration

l Especially if thorny issues are tackled early

Unified Process (UP)

l By Rumbaugh, Jacobson, Booch, others
l  Iterative and incremental through 4 phases
l Use case driven
l Architecture-centric
l Risk-focused
l UML-heavy

– Static models
– Dynamic models

Agile Software Development
l  Agility – observed to be a common feature of
successful processes

l  Different projects need different processes
l  Generally better to focus on skills, communication,

and community instead of processes
l  Fruitful to consider it “a cooperative game of

invention and communication” (Cockburn, 2002)

l  See Agile Manifesto: http://agilemanifesto.org/
–  And related Principles of Agile Software

Extreme Programming (XP)

l  Very popular agile development process today
–  Started by Kent Beck, Agile Alliance member

l  Mostly means adhering to some basic principles
–  Client representative on-site
–  Always practice pair programming
–  Perform constant, at least daily testing
–  Keep iterations short, and clearly time-boxed
–  Do frequent, incremental builds

l  See www.extremeprogramming.org

About OOA and OOD
l  Means: analyzing and designing a

system from an object perspective
–  System composed of objects or

concepts
l  What things or ideas are involved?
l  How do objects/concepts interact?

l  Means not: function-oriented
–  System composed of processes,

functions
l  What to do, and how to do it?
l  Mostly worry about “flow of control”

•  Record loans

•  Add resources

•  Report fines

Catalog Library
Book Librarian

Doing OOA and OOD
l  Not easy to do it well

–  But worth it for: big systems, big teams, long-term
productivity (software reuse, etc.)

–  Takes skill: experience, practice, learning
l  OOA – investigation of the problem

–  What must the system do?
–  Focus on learning the problem domain.

l  OOD – find solution to the problem
–  How will system fulfill requirements?
–  Define logical software objects and associations to

solve the problem.

Tools for doing OOA and OOD

l  UML – Unified Modeling Language
–  Standardized notation – now well accepted

l  CASE tools – computer-aided software
engineering tools (like “Rational Rose”)
–  Getting highly sophisticated now

l  Can generate code from modeling diagrams
l  Can do reverse engineering, …

–  Not necessary for CS 48 (but could help with
diagrams, and other requirements) – may cost $

Start by not even thinking about
programming
l  Try to focus on domain concepts at first

–  Not software constructs (wait until design stage)
–  Avoids complexity overload
–  Design and eventual system will be better too!

l  Create and maintain a steady stream of artifacts
–  Mostly pre-programming – diagrams, class

specifications, glossary, …
–  Guides initial implementation, and aids subsequent

modification, maintenance, and software reuse

CS 48 development schedule
l Overview: a planning phase, followed by

at least 2 complete development iterations
– each iteration produces a working system
– Call it “relaxed UP” reflecting agile principles

l  Planning phase – Requirements Analysis
– First be the client – describe the project
– Then analyze the requirements

l  Itemize system functions and characteristics
l  Write use cases, and assign use cases to

development iterations

CS 48 schedule (cont.)
l  Early iteration(s) –draft project (report and

current system)
–  Analyze the domain pertinent to the iteration

l  Identify classes, class attributes, and associations
l  Identify system behavior (as a “black box”)

–  Design the current system
l  Specify the way objects will behave and interact
l  Tie to other systems/tools as necessary

–  Implement and test
l  Complete at least 1 more iteration – final project

–  Analyze/design/implement/test and update documents
l  Also demonstrate system to class during last week of quarter

Next

Requirements Analysis

