Development process models

Requirements
Analysis

,

System
Design

,

Program
Design

e The classic

The — One step

leads to
Waterfall another ...

Model — No going

,

back

e Software
Testing “engineering”

(several steps)

| | Operation & |n aCtlon

Maintenance

Software development activities

e Note “activities” — not “steps”

e Often happening simultaneously
e Not necessarily discrete

Planning: mostly study the requirements
Domain analysis: study the problem area

. System design: devise the computer solution
Implementation: the easy step?

. Testing, documentation, maintenance, ...

Alternatives to waterfall model

/

Requirements

Maintenance

I\

/

\

Program

Delivery

System
Testing

Design

_—

Coding

N\

Software Development

Integration
Testing

Unit
Testing

/

Reality

e Okay, we
all agree —
this extreme
doesn’t
work either

e Is there a
middle
ground?

Risk — another reality

e Considered wise to tackle risky issues early

A
Requirements Integrate &
[Analysis l Design] Imp Iementj System Tes)

A
In a waterfall lifecycle,
high risk issues such as
integration and load test
may be tackled late.

Potential
impact of
risks being
tackled

Engineering the risk factor
e Spiral Model

DETERMINE GOALS, EVALUATE ALTERNATIVES
ALTERNATIVES, : AND RISKS

— Includes CONSTRAINTS Lonstaint®s L Risk analysis,
frequent risk - L

Constraittse

3 p ¢ Risk analysis,
analyses &g, R

S ”"6-,. i .
,‘,,"’.’;ER"I‘ analysis\ Proto- \ Proto- \ Proto-
— Frequent i s, SN A

Requirements, . Concept of RS Detsiled
o

reeval Uati On ™ life-cycle plan operation si::‘(“ &
E . Ing, T ¢ 5&\\‘;9
during an 2 R oo

N l\'\l‘“i X

eXte N d ed “ﬁ'ﬂd L Unit test

ystam

& design

Implementation :Acceptamce

= test
P lannin g ,_ plan Pt DEVELOP AND TEST
Stag e FIGURE 2.10 The spiral model.

Testing and Iiterating

Requirem_ents Opgration & ® Because We
Analysis Maintenance make mIStakeS

\ / e Requirements

Acceptance

Testing Change tOO
7 — Clients don’t

\ | spem always know
estin

Program : / g What they want

oesian until they see it

N Unit & Inte-

gration Testing o Key |dea plan
to Iterate

Incremental and iterative

development process
e Hmmm. A hybrid that seems to work.

Feedback from
iteration N leads t
refinement and
| adaptation of the
Implementation| & Implementation requirements and
Test & Integration Test & Integratic design in iteration
& More Desig & More Design N+1.

Requirements Requirements

Design Design

Final Integration.. ... Final Integratio
& System Test & System Test

_ /
Y

4 weeks (for exam%le)

.| Iterations are fixed i The system groWy
length, adimeboxed incrementally.

Iterating reduces risk overall

e Especially if thorny issues are tackled early

Potential

impact of

risks bein
tackled

Iteration

u

In an iterative lifecycCle
high-risk issues are
tackled early, to drive
down the riskiest proje
elements.

Agile Software Development

e Agility — common feature of successful processes
— Different projects need different processes

— Generally better to focus on skills, communication, and
community instead of processes

— Fruitful to consider it “a cooperative game of invention
and communication” (Cockburn, 2002)

e Extreme Programming ()

— Basically: client on-site; pair programming; constant
testing; short iterations; frequent, incremental builds

e Unified Process — more elaborate (see text), but
same basic ideas: 1terative and incremental

About OOA and OOD

e Means: analyzing and designing a

system from an object perspective

— System composed of objects or
concepts

o What things or ideas are involved?
e How do objects/concepts interact?

e Means not: function-oriented
— System composed of processes,

functions o Add resources
e What to do, and how to do it?

« Mostly worry about “flow of control” * Report fines

Catalog Library
Book Librarian

e Record loans

Doing OOA and OOD

e Not easy to do it well

— But worth it for: big systems, big teams, long-term
productivity (software reuse, etc.)

— Takes skill: experience, practice, learning

e OOA - Investigation of the problem
— What must the system do?
— Focus on learning the problem domain.
e OOD - find solution to the problem
— How will system fulfill requirements?

— Define logical software objects and associations to
solve the problem.

Tools for doing OOA and OOD

e UML - Unified Modeling Language
— Standardized notation — now well accepted
— Subset required in CS 50 — see the text

e CASE tools — computer-aided software
engineering tools (like “Rational Rose”)

— Getting highly sophisticated now
e Can generate code from modeling diagrams
e Can do reverse engineering, ...

— Not necessary for CS 50 (but could help with
diagrams, and other requirements) — may cost $

Start by not even thinking about
programming

e Try to focus on domain concepts at first
— Not software constructs (wait until design stage)
— Avoids complexity overload
— Design and eventual system will be better too!

e Create and maintain a steady stream of artifacts

— Mostly pre-programming
e Diagrams
e Class specifications
e Glossary, ...

— Guides initial implementation, and aids subsequent
modification, maintenance, and software reuse

CS 50 development process

e Overview: a planning phase, followed by
at least 2 complete development iterations
— each 1teration produces a working system

e Planning phase — first 2 assignments
— First be the client — describe the project

— Then analyze the requirements
e [temize system functions and characteristics

o Write use cases, and assign use cases to
development iterations

CS 50 process (cont.)

e Early iteration(s) — assignments 3 and 4

— Analyze the domain pertinent to the iteration
o ldentify classes, class attributes, and associations
e ldentify system behavior (as a “black box”)

— Design the current system

e Specify the way objects will behave and interact
e Tie to other systems/tools as necessary

— Implement and test

e Complete at least 1 more iteration — assignment 6

— Analyze/design/implement/test and update documents
e Also present intermediate project to class (assignment 5)

