
1

Development process models
The classic
– One step

leads to
another …

– No going
back

Software
“engineering”
in action

Requirements
Analysis

System
Design

Program
Design

Coding

Testing
(several steps)

Operation &
Maintenance

The
 Waterfall
 Model

Software development activities

Note “activities” – not “steps”
Often happening simultaneously
Not necessarily discrete

1. Planning: mostly study the requirements
2. Domain analysis: study the problem area
3. System design: devise the computer solution
4. Implementation: the easy step?
5. Testing, documentation, maintenance, …

Alternatives to waterfall model
Okay, we
all agree –
this extreme
doesn’t
work either
Is there a
middle
ground?

Requirements
Analysis

System
Design

Unit
Testing

Software Development Reality

Integration
Testing

Maintenance

Delivery

System
Testing Coding

Program
Design

Risk – another reality

In a waterfall lifecycle,
high risk issues such as
integration and load test
may be tackled late.

Time

Potential
impact of

risks being
tackled

Requirements
Analysis

Design Implement
Integrate &

System Test

Considered wise to tackle risky issues early

Engineering the risk factor
Spiral Model
– Includes

frequent risk
analyses

– Frequent
reevaluation
during an
extended
planning
stage

Testing and iterating
Because we
make mistakes
Requirements
change too
– Clients don’t

always know
what they want
until they see it

Key idea: plan
to iterate

Requirements
Analysis

System
Design

Program
Design

Coding

Unit & Inte-
gration Testing

Operation &
Maintenance

 The V Model

System
Testing

Acceptance
TestingValidate requirements

Verify design

2

Incremental and iterative
development process

Hmmm. A hybrid that seems to work.

Requirements

Design

Implementation &
Test & Integration
& More Design

Final Integration
& System Test

Requirements

Design

4 weeks (for example)
The system grows
incrementally.

Feedback from
iteration N leads to
refinement and
adaptation of the
requirements and
design in iteration
N+1.

Iterations are fixed in
length, or timeboxed.

Time

Implementation &
Test & Integration
& More Design

Final Integration
& System Test

Iterating reduces risk overall

In an iterative lifecycle
high-risk issues are
tackled early, to drive
down the riskiest proje
elements.

Time

Potential
impact of

risks being
tackled

Iteration

Especially if thorny issues are tackled early

Agile Software Development
Agility – common feature of successful processes
– Different projects need different processes
– Generally better to focus on skills, communication, and

community instead of processes
– Fruitful to consider it “a cooperative game of invention

and communication” (Cockburn, 2002)

Extreme Programming (www.extremeprogramming.org)
– Basically: client on-site; pair programming; constant

testing; short iterations; frequent, incremental builds
Unified Process – more elaborate (see text), but
same basic ideas: iterative and incremental

About OOA and OOD
Means: analyzing and designing a
system from an object perspective
– System composed of objects or

concepts
What things or ideas are involved?
How do objects/concepts interact?

Means not: function-oriented
– System composed of processes,

functions
What to do, and how to do it?
Mostly worry about “flow of control”

• Record loans

• Add resources

• Report fines

Catalog Library
Book Librarian

Doing OOA and OOD
Not easy to do it well
– But worth it for: big systems, big teams, long-term

productivity (software reuse, etc.)
– Takes skill: experience, practice, learning

OOA – investigation of the problem
– What must the system do?
– Focus on learning the problem domain.

OOD – find solution to the problem
– How will system fulfill requirements?
– Define logical software objects and associations to

solve the problem.

Tools for doing OOA and OOD
UML – Unified Modeling Language
– Standardized notation – now well accepted
– Subset required in CS 50 – see the text

CASE tools – computer-aided software
engineering tools (like “Rational Rose”)
– Getting highly sophisticated now

Can generate code from modeling diagrams
Can do reverse engineering, …

– Not necessary for CS 50 (but could help with
diagrams, and other requirements) – may cost $

3

Start by not even thinking about
programming

Try to focus on domain concepts at first
– Not software constructs (wait until design stage)
– Avoids complexity overload
– Design and eventual system will be better too!

Create and maintain a steady stream of artifacts
– Mostly pre-programming

Diagrams
Class specifications
Glossary, …

– Guides initial implementation, and aids subsequent
modification, maintenance, and software reuse

CS 50 development process

Overview: a planning phase, followed by
at least 2 complete development iterations
– each iteration produces a working system
Planning phase – first 2 assignments
– First be the client – describe the project
– Then analyze the requirements

Itemize system functions and characteristics
Write use cases, and assign use cases to
development iterations

CS 50 process (cont.)
Early iteration(s) – assignments 3 and 4
– Analyze the domain pertinent to the iteration

Identify classes, class attributes, and associations
Identify system behavior (as a “black box”)

– Design the current system
Specify the way objects will behave and interact
Tie to other systems/tools as necessary

– Implement and test
Complete at least 1 more iteration – assignment 6
– Analyze/design/implement/test and update documents

Also present intermediate project to class (assignment 5)

