Development process models

Requirements
Analysis
System
Design

Program
Design
Testing
(several steps)

e The classic

— One step
The leads to
Waterfall another ...
Model - No going
back
e Software
“engineering”
in action

Operation &
Maintenance

Software development activities

e Note “activities” — not “steps”
e Often happening simultaneously
e Not necessarily discrete

Planning: mostly study the requirements
Domain analysis: study the problem area
System design: devise the computer solution
Implementation: the easy step?

Testing, documentation, maintenance, ...

g wDn e

Alternatives to waterfall model

Requirements
e Okay, we
A.vklA all agree —
\’q"}“'/«,‘ Design o
TR N this extreme
~ = doesn’t
work either
e Isthere a
middle
ground?

Software Development Reality

Risk — another reality

e Considered wise to tackle risky issues early

Requirements Integrate &
[“Analysis I Design I Imp,ememISyslem Test

Potential

. In a waterfall lifecycle,
r:;gaszg;; high risk issues such as
tackled integration and load test

may be tackled late.

Time

Engineering the risk factor

e Spiral Model

— Includes
frequent risk
analyses

— Frequent
reevaluation
during an
extended
planning
stage

MTERNINE BOLLE,
MTERRATIFRS,
ComETRATE

OYALSATS ALTERRATIVR
T

Testing and iterating
e Because we
make mistakes

The Mo
Analysis R Maintenance

‘ e Requirements

o Ve requianais | change too

\ — Clients don’t

oo always know
program | Ve aesen what they want
Desion) N vy until they see it

" gration Testing [) Key idea: plan

to iterate

Incremental and iterative
development process
e Hmmm. A hybrid that seems to work.

iteration N leads t
§ Design o refinement and
Lime of the

—

Implementation|& Implementation| & requirements and
Test & Integration Test & Integratipn design in iteration
& More Desigr & More Desig N+t

Final Integratid
& System Tes

Final Integratiol .
s & System Tes
O

4 weeks (for example)
....| Iterations are fixed il The system gro®™
length, aimeboxed incrementally.

Iterating reduces risk overall
e Especially if thorny issues are tackled early

Iteration

Potentiall In an iterative lifecy

|
impact o high-risk issues are

risks being i tackled early, to drive
tackled ! I ! ! ! down the riskiest proj

elements.

Agile Software Development

e Agility — common feature of successful processes
— Different projects need different processes

— Generally better to focus on skills, communication, and
community instead of processes

— Fruitful to consider it “a cooperative game of invention
and communication” (Cockburn, 2002)

e Extreme Programming (www.extremeprogramming.org)

— Basically: client on-site; pair programming; constant

testing; short iterations; frequent, incremental builds

e Unified Process — more elaborate (see text), but
same basic ideas: iterative and incremental

About OOA and OOD

e Means: analyzing and designing a
system from an object perspective
— System composed of objects or
concepts
o What things or ideas are involved?
« How do objects/concepts interact?
e Means not: function-oriented
— System composed of processes, * Record loans
functions « Add resources
e What to do, and how to do it?)
o Mostly worry about “flow of control” * Report fines

Catalog Library
Book Librarian

Doing OOA and OOD

e Not easy to do it well

— But worth it for: big systems, big teams, long-term
productivity (software reuse, etc.)

— Takes skill: experience, practice, learning
e OOA - investigation of the problem

— What must the system do?

— Focus on learning the problem domain.
e OOD - find solution to the problem

— How will system fulfill requirements?

— Define logical software objects and associations to
solve the problem.

Tools for doing OOA and OOD

e UML - Unified Modeling Language
— Standardized notation — now well accepted
— Subset required in CS 50 — see the text
e CASE tools — computer-aided software
engineering tools (like “Rational Rose™)
— Getting highly sophisticated now
e Can generate code from modeling diagrams
e Can do reverse engineering, ...

— Not necessary for CS 50 (but could help with
diagrams, and other requirements) — may cost $

Start by not even thinking about
programming

e Try to focus on domain concepts at first
— Not software constructs (wait until design stage)
— Avoids complexity overload
— Design and eventual system will be better too!
e Create and maintain a steady stream of artifacts
— Mostly pre-programming
o Diagrams
o Class specifications
o Glossary, ...

— Guides initial implementation, and aids subsequent
modification, maintenance, and software reuse

CS 50 development process

e Overview: a planning phase, followed by
at least 2 complete development iterations
— each iteration produces a working system
e Planning phase — first 2 assignments
— First be the client — describe the project
— Then analyze the requirements
 Itemize system functions and characteristics

o Write use cases, and assign use cases to
development iterations

CS 50 process (cont.)

e Early iteration(s) — assignments 3 and 4
— Analyze the domain pertinent to the iteration
o Identify classes, class attributes, and associations
o |dentify system behavior (as a “black box™)
— Design the current system
o Specify the way objects will behave and interact
o Tie to other systems/tools as necessary
— Implement and test
e Complete at least 1 more iteration — assignment 6

— Analyze/design/implement/test and update documents
e Also present intermediate project to class (assignment 5)

